Answer:

Explanation:
<u>Frictional Force
</u>
When the car is moving along the curve, it receives a force that tries to take it from the road. It's called centripetal force and the formula to compute it is:

The centripetal acceleration a_c is computed as

Where v is the tangent speed of the car and r is the radius of curvature. Replacing the formula into the first one

For the car to keep on the track, the friction must have the exact same value of the centripetal force and balance the forces. The friction force is computed as

The normal force N is equal to the weight of the car, thus

Equating both forces

Simplifying

Substituting the values


Neuropsychology was the study of brain-behavior relationships. <span>Biological psychology is concerned with both a molecular and global perspective</span>
We will convert the 1dm3 in terms of cm3 as follows:
1dm^3 = (10 cm)^3
= 1000 cm^3
The mass of platinum is equal to 900 lb.
Then we will convert the mass in terms of grams as follows:
1 lb = 453.6 g
900 = 900 x 453.6 g
= 408240 g
Then density of platinum is equal to 21.4 g/cm^3
We will calculate the volume of platinum in mass 408240 g as follows:
Volume of platinum = mass of platinum / density of platinum
= 408240 g / 21.4 g/cm^3
= 19076.6 cm^3
The total volume of platinum is 19076.6 cm^3
The volume of platinum in 1 L bar is 1000cm^3
So, to calculate the number of bars we will use the formula as follows;
Number of bars = volume of platinum available / volume of platinum required in 1 L bar
= 19076.6 cm^3 / 1000 cm^3
= 19
So, the number of bars are 19.
Answer:
a) K = 2/3 π G m ρ R₁³ / R₂
, b) U = - G m M / r
Explanation:
The law of universal gravitation is
F = G m M / r²
Part A
Let's use Newton's second law
F = m a
The acceleration is centripetal
a = v² / R₂
G m M / R₂² = m v² / R₂
v² = G M / R₂
They give us the density of the planet
ρ = M / V
V = 4/3 π R₁³
M = ρ V
M = ρ 4/3 π R₁³
v² = 4/3 π G ρ R₁³ / R₂
K = ½ m v²
K = ½ m (4/3 π G ρ R₁³ / R₂)
K = 2/3 π G m ρ R₁³ / R₂
Part B
Potential energy and strength are related
F = - dU / dr
∫ dU = - ∫ F. dr
The force was directed towards the center and the vector r outwards therefore there is an angle of 180º between the two cos 180 = -1
U- U₀ = G m M ∫ dr / r²
U - U₀ = G m M (- r⁻¹)
We evaluate for
U - U₀ = -G m M (1 /
- 1 /
)
They indicate that for ri = ∞ U₀ = 0
U = - G m M / r
To determine the force that acts on the mass, just multiply the mass by the gravitational field. Using the given data,
F = (2.50 kg)(14 N/kg) = 35 N
Therefore, the force that acts on the mass is equal to 35 N.