1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
3 years ago
14

A bicycle tire is spinning clockwise at 3.40 rad/s. During a time period Δt = 2.50 s, the tire is stopped and spun in the opposi

te (counterclockwise) direction, also at 3.40 rad/s. Calculate the change in the tire's angular velocity Δω and the tire's average angular acceleration αav. (Indicate the direction with the signs of your answers.)
Physics
2 answers:
disa [49]3 years ago
4 0

Answer:

The change in the tire’s angular velocity is -3.4rad/s and the tire’s average angular acceleration is 2.72rad/s^2.

Explanation:

To solve this exercise we must go back to the kinematic equations of motion in which the angular velocity change is defined, and the expression derived from the expression from time and velocity. The equation of angular velocity change is given by:

\Delta \omega = \omega_f - \omega_i

Where \omega means the angular velocity.

Our values are given by:

\omega_i = 3.4rad/s

\omega_f = -3.4rad/s

There was a change in the direction of the speed.

Then the Total change of velocity is

\Delta omega = -3.4-3.4 = -6.8rad/s

We can know find the Acceleration of the object, which is given by,

\alpha = \frac{\omega}{t}

\alpha = \frac{-6.8rad/s}{2.5}

\alpha = 2.72rad/s^2

Therefore the change in the tire’s angular velocity is -3.4rad/s and the tire’s average angular acceleration is 2.72rad/s^2.

Finger [1]3 years ago
3 0

Answer:

The change in the tire's angular velocity is 6.80\frac{rad}{s}. The tire's average angular acceleration is 2.72\frac{rad}{s^2}

Explanation:

Let's assume that the counterclockwise direction is the positive direction, then, as we were given the initial and final angular velocity (ω) and there is a direction change between them, <u>we can calculate the change in angular velocity as</u>

\Delta\omega=\omega_{f}-\omega_{i}=3.40\frac{rad}{s}-(-3.40\frac{rad}{s})=6.80\frac{rad}{s}

On the other hand, to calculate the average angular acceleration we have that

\alpha_{av}=\frac{\Delta\omega}{\Delta t}

<em>we just calculated Δω, and Δt is given in the problem</em>, therefore

\alpha_{av}=\frac{\Delta\omega}{\Delta t}=\frac{6.80rad}{2.50s^2}=2.72\frac{rad}{s^2}

is the average angular acceleration of the tire.

You might be interested in
Help on 9 and 10! Please help me!
Ivan

9 is D I believe, I don't know about 10

6 0
3 years ago
I need help with this
mel-nik [20]
It’s 4. Definitely 4. 99% sure it’s 4.
4 0
2 years ago
RC time constant circuit if R 50 KOC-21 a TOSS c. 1.05 s . what is the expected RC value b. 10.55 d. 0.105 s
Afina-wow [57]

Answer:

Time constant of RC circuit is 0.105 seconds.

Explanation:

It is given that,

Resistance, R=50\ K\Omega=5\times 10^4\ \Omega

Capacitance, C=2.1\ \mu F=2.1\times 10^{-6}\ F

We need to find the expected time constant for this RC circuit. It can be calculated as :

\tau=R\times C

\tau=5\times 10^4\times 2.1\times 10^{-6}

\tau=0.105\ s

So, the time constant for this RC circuit is 0.105 seconds. Hence, this is the required solution.

7 0
2 years ago
A radioactive material has a count rate of 400 per minute. It has a half life of 40 years. How long will it take to decay to a r
cestrela7 [59]

Answer:

160 years.

Explanation:

From the question given above, the following data were obtained:

Initial count rate (Cᵢ) = 400 count/min

Half-life (t½) = 40 years

Final count rate (Cբ) = 25 count/min

Time (t) =?

Next, we shall determine the number of half-lives that has elapse. This can be obtained as follow:

Initial count rate (Cᵢ) = 400 count/min

Final count rate (Cբ) = 25 count/min

Number of half-lives (n) =?

Cբ = 1/2ⁿ × Cᵢ

25 = 1/2ⁿ × 400

Cross multiply

25 × 2ⁿ = 400

Divide both side by 25

2ⁿ = 400/25

2ⁿ = 16

Express 16 in index form with 2 as the base

2ⁿ = 2⁴

n = 4

Thus, 4 half-lives has elapsed.

Finally, we shall determine the time taken for the radioactive material to decay to the rate of 25 counts per minute. This can be obtained as follow:

Half-life (t½) = 40 years

Number of half-lives (n) = 4

Time (t) =?

n = t / t½

4 = t / 40

Cross multiply

t = 4 × 40

t = 160 years.

Thus, it will take 160 years for the radioactive material to decay to the rate of 25 counts per minute.

7 0
2 years ago
When a person speaks, a sound intensity is generated that is 600 times greater than when the person whispers. What is the differ
Charra [1.4K]

Answer:

Originally :  Level = log I / I0

Currently: Level = 10 log I / I0

Level = 10 log 600 = 10 * 2.78 = 27.8

Note the term 1 bel = 10 decibels

5 0
2 years ago
Other questions:
  • What would we need to know to calculate work and power
    15·1 answer
  • Many appliances in your home use electrical energy. What other forms of energy when the appliances are turned on?
    10·2 answers
  • Suppose the initial position of an object is zero, the starting velocity is 3 m/s and the final velocity was 10 m/s. The object
    10·2 answers
  • What change would occur in the kinetic energy of vapor if a container of vapor is placed at 0 Kelvin?
    8·1 answer
  • An instrument for observing very small objects is
    13·1 answer
  • The uniform diving board has a mass of 35 kg . A B 0.8 m 4 m Find the force on the support A when a 65 kg diver stands at the en
    10·1 answer
  • A 12-kg hammer strikes a nail at a velocity of and comes to rest in a time interval of 8.0 ms. (a) What is the impulse given to
    9·1 answer
  • This graph shows the change in the force of gravity as distance increases. The graph will never reach zero, which suggests that​
    6·1 answer
  • On
    10·1 answer
  • Un avión vuela hacia al norte a una velocidad de 90 m/s, pero un fuerte viento sopla hacia al este a 20 m/s y desvía su rumbo. R
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!