Answer:
A
Explanation:
The figure shows the electric field produced by a spherical charge distribution - this is a radial field, whose strength decreases as the inverse of the square of the distance from the centre of the charge:

More precisely, the strength of the field at a distance r from the centre of the sphere is

where k is the Coulomb's constant and Q is the charge on the sphere.
From the equation, we see that the field strength decreases as we move away from the sphere: therefore, the strength is maximum for the point closest to the sphere, which is point A.
This can also be seen from the density of field lines: in fact, the closer the field lines, the stronger the field. Point A is the point where the lines have highest density, therefore it is also the point where the field is strongest.
a)
We use the formula :
m1v1i + m2v2i = m1v1f + m2v2f
Substituting the values in:
4.0kg*8.0m/s + 4.0kg*0m/s = 4.0kg*0m/s +4.0kg*v2f
Calculating this we get:
32.0kg*m/s + 0kg*m/s = 0kg*m/s + 4.0kg*v2f
Rearrange for v2f:
v2f = 
This gives us 8.0 m/s as the final velocity of the second ball.
b)
Since the collision is assumed to be elastic it means that the kinetic energy must be equal before and after the collision.
This means we use the formula:
Ek =
+
=
+ 
Substituting in values:
Ek = 0.5*4.0kg*(8.0m/s)^2 + 0.5*4.0kg*(0m/s)^2 = 0.5*4.0kg*(0m/s)^2 + 0.5*4.0kg*(8.0m/s)^2
This simplifies to:
Ek= 128J + 0J = 0J + 128J
This shows us that the kinetic energy is equal on each side therefore the collision is Elastic and no energy has been lost.
1) G
2) E
3) D
4) I
5) J
6) C
7) H
8) F
9) B
10) A
I think... i am not 100% sure....
Answer:
Yes it is true
As the Hubble's law states that the observation in physical cosmology that galaxies are moving away from the Earth at speeds proportional to their distance.
Explanation: