Force acting on the body when the body is at rest the net formals is given
Electron microscopes differ from light microscopes in that they produce an image of a specimen by using a beam of electrons rather than a beam of light. Electrons have much a shorter wavelength than visible light, and this allows electron microscopes to produce higher-resolution images than standard light microscopes
Q1. Chemical, Physical, Physical, Physical
(l am not 100% sure about the 4th answer)
Q2. All of the above
<span>Answer: 0.094%
</span><span>Explanation:
</span>
<span></span><span /><span>
1) Equilibrium chemical equation:
</span><span />
<span>Only the ionization of the formic acid is the important part.
</span><span />
<span>HCOOH(aq) ⇄ HCOO⁻(aq) + H⁺(aq).
</span><span />
<span>2) Mass balance:
</span><span />
<span> HCOOH(aq) HCOO⁻(aq) H⁺(aq).
Start 0.311 0.189
Reaction - x +x +x
Final 0.311 - x 0.189 + x x
3) Acid constant equation:
</span><span />
<span>Ka = [HCOO-] [N+] / [HCOOH] = (0.189 + x) x / (0.311 -x)
</span><span />
<span>= (0.189 + x )x / (0.311 - x) = 0.000177
4) Solve the equation:
You can solve it exactly (it will lead to a quadratic equation so you can use the quadratiic formula). I suggest to use the fact that x is much much smaller than 0.189 and 0.311.
</span><span />
<span>With that approximation the equation to solve becomes:
</span><span>0.1890x / 0.311 = 0.000177, which leads to:</span>
<span /><span>
x = 0.000177 x 0.311 / 0.189 = 2.91 x 10⁻⁴ M
5) With that number, the percent of ionization (alfa) is:
</span><span />
<span>percent of ionization = (moles ionized / initial moles) x 100 =
</span><span>
</span><span>
</span><span>percent ionization = (concentration of ions / initial concentration) x 100 =
</span><span>
</span><span>
</span><span>percent ionization = (0.000291 / 0.311)x 100 = 0.0936% = 0.094%
</span>
<span></span><span />
Answer:
A combination is certainly possible, but you should not take formal charges so literally
Normally, when a covalent bond is found, the two atoms both bring in one electron. As you identify correctly, in the case of nitric acid that would not be possible completely. If you draw the different possible resonance structures, the most likely structure has a single bond between the nitrogen and an oxygen where the oxygen has 3 lone pairs and both electrons in the bond are donated by the nitrogen. This makes the nitrogen "positive" and that oxygen "negative", but in fact the electrons move more freely in the molecule and charges are more distributed. You will not be able to find "the negatively charged" oxygen atom.
Explanation:
<h2>
<u>PLEASE</u><u> </u><u>MARK</u><u> ME</u><u> BRAINLIEST</u><u> AND</u><u> FOLLOW</u><u> M</u><u> E</u><u> LOTS</u><u> OF</u><u> LOVE</u><u> FROM</u><u> MY</u><u> HEART</u><u> AND</u><u> SOUL</u><u> DARLING</u><u> </u><u>TEJASWI </u><u> HERE</u><u> ❤️</u></h2>