To find the Percent Composition of an atom, you use this formula:
Mass of element in the compound you're studying on ( in this case it's 5 since there is 5 Hydrogens) over the mass of the compound (which is here 79), Multiplied by 100 since you want a percent.
So we get:

So you get about:


So, the percent composition of Hydrogen in NH4HCO3 is 6.3%
Hope this Helps! :D
Melting, vaporization, boiling, and sublimation.
The correct answer is H2SO3 I took the assignment already
The answer is 23.5° but I guess 23° is closest
Answer:
- <em>Brønsted-Lowry acid: HNO₂</em>
- <em>Brønsted-Lowry base: NH₃</em>
- <em>Conjugate acid: NH₄⁺</em>
- <em>Conjugate base: NO₂⁻</em>
Explanation:
The equation is:

<em>Brønsted-Lowry acids</em> are H⁺ donors.
<em>Brønsted-Lowry bases</em> are H⁺ acceptors.
Thus, on the left side, <em>HNO₂</em> is the acid and <em>NH₃ </em>is the base.
The <em>conjugate acids</em> and <em>conjugate bases</em> are on the right side of the equation.
The <em>conjugate acid</em> is the spieces that is formed after a base accepts the proton; thus it is <em>NH₄⁺</em>. A <em>conjugate acid</em> contains one more H atom and one more + charge than the base that formed it.
The <em>conjugate base</em> is the species that is formed after the acid donates its proton; thus, <em>NO₂⁻</em> is the <em>conjugate base</em>. A <em>conjugate base</em> contains one less H atom and one more - charge than the acid that formed it.
Summarizing:
- Brønsted-Lowry acid: HNO₂