Answer:
There are 12 nanoseconds in
.
Explanation:
We need to convert
to nanoseconds.
We know that,

Now using unitary method to solve it such that,

So, there are 12 nanoseconds in
.
Physical Change: It is a type of change in which matter changes its physical state like shape, size but is not transformed into another substance. It is usually a reversible process.
Chemical Change: It is a type of change in which the rearrangement of atoms of one or more than one substance is involved. and it changes its chemical composition that is there is a formation of at least one new substance. It is usually an irreversible process.
Now, keeping in mind the definitions, we can easily classify the examples in the question as physical or chemical change.
7. Chemical Change
8. Chemical Change
9. Physical Change
10. Chemical Change
11. Physical Change
12. Physical Change
13. Chemical Change
14. Physical Change
15. Chemical Change
16. Physical Change
17. Chemical Change
18. Chemical Change
19. Physical Change
20. Physical Change
21. Chemical Change
22. Physical Change
23. Chemical Change
24. Chemical Change
25. Physical Change
In a flame photometric analysis, salt solution is first vaporized using the heat of flame, followed by this electrons from valance shell gets excited from ground state to excited state. Followed by this de-excitation of electron bring backs electrons to ground state. This process is accompanied by emission of photon. The photon emitted is characteristic of an element, and number of photons emitted can be used for quantitative analysis.
<span>Following are the investigative question that you can answer by doing this experiment.
</span>1) What information can be obtained from the colour of flame?
2) <span>State the relationship between wavelength, frequency, and energy?
</span><span>3) Can you identify the metal present in unknown sample provided?
4) How will you identify amount of metal present in sample solution?
5) </span><span>Why do different chemicals emit light of different colour?</span><span>
</span>
the answer is true the first one
The final temperature of the lead-water system will be lower than the final temperature of the copper-water system.