Answer:
The specific heat for the metal is 0.466 J/g°C.
Explanation:
Given,
Q = 1120 Joules
mass = 12 grams
T₁ = 100°C
T₂ = 300°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
ΔT = T₂ - T₁ = 300°C - 100°C = 200°C
Substituting values,
1120 = (12)(200)(Cp)
Cp = 0.466 J/g°C.
Therefore, specific heat of the metal is 0.466 J/g°C.
Answer:
V = 85.2
Explanation:
STP = 273K and 1 atm
Considering what we know about STP, we get the moles, temperature, and pressure. Using the ideal gas law we can find the volume (PV = nRT). Plug in our variables: (1 * V = 3.80 * R * 273). Since we are dealing with atm and not kPA or mmHg, we use the constant for atm (0.0821) which we use for R. (So.. now our equation is 1 * V = 3.80 * 0.0821 * 273). We now multiply the right side to get 85.17054. So... V = 85.2 considering sigificant figures (this is the part where I am the least sure of, since I havent done sig figs in a while)
Answer:
They have similar properties, because they share similar amounts of electrons in their outer shell, valence electrons! This means they will only be able to interact with other elements with those electrons so they often show similar properties.
Explanation:
The condition at which the entropy of a pure solid will be zero is<span> when a substance is at absolute zero. Absolute zero is </span><span>the lowest temperature that is theoretically possible, at which the motion of particles which constitutes heat would be minimal. It is zero on the Kelvin scale, equivalent to −273.15°C.</span>
Answer: The molar mass of each gas
Explanation:
Mole fraction is the ratio of moles of that component to the total moles of solution. Moles of solute is the ratio of given mass to the molar mass.

Suppose if there are three gases A, B and C.
a) 
b) 
c) 
moles of solute =
Thus if mass of each gas is known , we must know the molar mass of each gas to know the moles of each gas.