Answer: D
Explanation:
London forces become stronger as the atom in question becomes larger, and to a smaller degree for large molecules. [4] This is due to the increased polarizability of molecules with larger, more dispersed electron clouds. The polarizability is a measure of ease with which electrons can be redistributed; a large polarizability implies that the electrons are more easily redistributed. This trend is exemplified by the halogens (from smallest to largest: F 2 , Cl2 , Br 2 , I 2 ). The same increase of dispersive attraction occurs within and between organic molecules in the order RF<RCL<RBr<RI, or with other more polarizable heteroatoms. [5] Fluorine and chlorine are
gases at room temperature, bromine is a liquid, and iodine is a solid. The London forces are thought to be arise from the motion of electrons.
<h2>D this is a lot of hour to found but its ok thank you for sharing your question i hope this help</h2>
<h3>Carry on learning:)</h3>
Friction of the air, and the surface it is on
Matter is a slightly archaic word for something with mass, as in the conservation of matter (which must be paired with the conservation of energy to still hold true. Mass can be converted back and forth between energy, so therefore so can matter. Of course relativistic mass is conserved as it's a function of the energy of an object in that reference frame.