0.001 would be the smallest.
Good Luck! :)
Answer:
Elements can be described by various properties, and identified by their boiling and melting points. For example, gold melts at
Elements can be described by various properties, and identified by their boiling and melting points. For example, gold melts at 1,064ºC and boils at 2,856ºC. Does boiling point depend on the mass present?
A. No; chemical properties stay the same regardless of mass.
B. No; physical properties stay the same regardless of mass.
C. Yes; physical properties can change when mass increases or decreases.
D. No; qualitative properties like boiling point stay the same regardless of mass.
Explanation:
Answer:
In He2 molecule,
Atomic orbitals available for making Molecular Orbitals are 1s from each Helium. And total number of electrons available are 4.
Molecular Orbitals thus formed are:€1s2€*1s2
It means 2 electrons are in bonding molecular orbitals and 2 are in antibonding molecular orbitals .
Bond Order =Electrons in bonding molecular orbitals - electrons in antibonding molecular orbitals /2
Bond Order =Nb-Na/2
Bond Order =2-2/2=0
Since the bond order is zero so that He2 molecule does not exist.
Explanation:
Answer:
Heat transfer in step 2 = 47.75 J
Explanation:
Internal energy = heat + work done
U = Q + W
In a cyclic process the total internal energy change of the system = 0.
In the process there are two steps. The total heat exchange in the process is the sum of heat exchanges in the two processes.
We have to find the heat exchange in step 2.
In step 1,
W = 1.25 J Q = -37 J
= -37 + 1.25 = -35.75 J
In step 2, the internal energy change will be negative of that in step 1.
U = 35.75 J
W = -12 J
U = Q + W
35.75 = Q -12
Q = 47.75 J
Heat transfer in step 2 = 47.75 J
Explanation:
The Lewis dot diagram shows how electrons participate in a bond with Carbon and Chlorine. This is shown by the sticks and the 2 paired electrons near the carbon atom which represent the bonds. These electrons form these bonds because they form octets when they are bonded which most molecules and compounds follow
Hoped this helped, 2Trash4U