Answer: The answer has 7 significant figures
Explanation:
The addition of 190.5 and 42.1014 will give 232.6014. Counting the digits will give 7 significant figures.
The maximum amount of XeF4 that could be produced is 0.5 moles.
XeF4 = Xe (g) 2 F2 (g) (g)
Xe and F2 have a mole ratio of 1:2. Because of this, the reaction would be limited by F2 when there is 1 mole of Xe and 1 mole of F2.
<h3>What is mole ratio?</h3>
The mole ratio is the ratio of any two compounds' mole amounts that are present in a balanced chemical reaction.
A comparison of the ratios of the molecules required to accomplish the reaction is given by the balancing chemical equation.
A mole ratio is a conversion factor used in chemical reactions to link the mole quantities of any two compounds. A conversion factor's numbers are derived from the balanced chemical equation's coefficients.
To learn more about mole ratio from the given link:
brainly.com/question/14425689
#SPJ4
Answer:
If a chain reaction takes place, the amount of energy released would increase exponentially, so in order to control the energy release, fission must be controlled without controlling a chain reaction, so the third option is correct.
Hope this helps!
Explanation:
12.5g, each 10 years you lose a half of what you have at that given moment
Answer : If we list the given chemicals according to their increasing oxidising ability then the order will be like this; 1 being the strongest and 6 being the weakest
1. K > 2. Ca >3. Ni> 4. Cu> 5. Ag> 6.Au
Explanation : Considering the reduction potential of each chemical species it will be easy to identify their oxidising capacity and differentiate accordingly;
More negative the value of reduction potential more is the ability of the chemical species to get oxidised.
Chemicals with their reduction potential is given below.
K has -2.92; Ca has -2.76; Ni has -0.23; Cu has 0.52; Ag has 1.50 and Au has 1.50.