Answer:
20 protons, 20 electrons, and 21 neutrons
Explanation:
The atomic number of an atom is the number of protons it has. If the atomic number is 20 then we know the atom has 20 protons.
•The mass number of an atom is the total number of protons and neutrons the atom contains. The mass number is 41 and the number of protons is 20, just subtract 20 from 41 and you will get the number of neutrons: 41 - 20= 21. The atoms has 21 neutrons.
•The number of electrons found in an atom is equal to the number of protons. The atoms has 20 protons which means it has 20 electrons.
So, the answer is:
20 protons, 20 electrons, and 21 neutrons
Answer:
1. Venus
471°C
2. Mercury
(430°C) during the day, (-180°C) at night
3. Earth
16°C
4. Mars
-28°C
5. Jupiter
-108°C
6. Saturn
-138°C
7. Uranus
-195°C
8. Neptune
-201°C
Explanation:
.
Answer:
19.07 g mol^-1
Explanation:
The computation of the molecular mass of the unknown gas is shown below:
As we know that

where,
Diffusion rate of unknown gas = 155 mL/s
CO_2 diffusion rate = 102 mL/s
CO_2 molar mass = 44 g mol^-1
Unknown gas molercualr mass = M_unknown
Now placing these values to the above formula

After solving this, the molecular mass of the unknown gas is
= 19.07 g mol^-1
Answer:
im pretty sure its 2...
Explanation:
if its wrong im sorry
if its right brainliest pls?
Length of 1 side 1.2*10^-5km =1.2*10^-5*10^5 =1.2cm
<span>volume of the cube (1.2)^3=1.728 cm^3 </span>
<span>density= mass/volume= 1.1/1.728=0.636 g/cm^3</span>