Answer:

Explanation:
When it comes to electron configuration and orbitals, it's important to first identify what exactly we are trying to identify. Below is a given example:





Looking at the periodic table, identify the alkali metal family on the periodic table, or group one elements:

Notice how each configuration has an exponent of
, representative of a single electron in their s-orbital.
<span>The energy (E) per photon is expressed by Planck's equation: E = hf, where f is
the frequency and h is Planck's constant, experimentally determined to be
6.625 * 10**-34 joule-seconds. So to find E, we multiply h by the frequency
and obtain E = hf = (6.625 * 10**-34)(7.0 * 10**14) = 46.375 * 10**-20 joule
or in standard notation, E = 4.6375 * 10**-19 joule per photon.
Hope this answers your question.Sorry if I calculated wrong.</span>
Answer:
this is difficult but simple to answer
Explanation:
all atoms move in 1 direction no more than 2
Answer:
Zinc + Hydrochloric Acid Zinc Chloride and Hydrogen Gas
Zn + 2HCI - ZnCl2 + H2
Explanation:
Be sure to label your model to clearly show how you are representing the atoms