You need to find moles of the gas, so you would use the ideal gas law:
PV=nRT
Pressure
Volume
n=moles
R= gas constant
Tenperature in Kelvin
n= PV/RT
(1.00atm)(1.35L)/(.08206)(332K) = 0.050mol
Molar mass is grams per mole, so
(3.75g/.050mol) = 75g/mol
Answer: The universe consists of all physical objects on earth in space
Explanation:
Answer is: mass of <span>potassium bromide is 4.71 grams.
V(KBr) = 25.4 mL </span>÷ 1000 mL/L = 0.0254 L, volume of solution.
c(KBr) = 1.56 mol/L.
n(KBr) = c(KBr) · V(KBr).
n(KBr) = 1.56 mol/L 0.054 L.
n(KBr) = 0.0396 mol, amount of substance.
m(KBr) = n(KBr) · M(KBr).
m(KBr) = 0.0396 mol · 119 g/mol.
m(KBr) = 4.71 g.
M - molar mass.
Answer: The bonds are intermediate between double and single bonds
Explanation:
A closer look at the diagram below shows that the bonds in sulphur IV oxide are intermediate between double and single bonds. Hence they do not have the exact bond angle of single bonds. This is why the bond angle is not exactly 120°. There are two resonance structures in the diagram that clearly show this point.
There are 1000 milligrams in a gram, so you can find the answer through multiplication: 150 • 1000
The answer is 150,000