1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kipish [7]
3 years ago
13

In a game of pool, the cue ball strikes another ball of the same mass and initially at rest. After the collision, the cue ball m

oves at 4.60 m/s along a line making an angle of 28.0° with its original direction of motion, and the second ball has a speed of 3.40 m/s. Find (a) the angle between the direction of motion of the second ball and the original direction of motion of the cue ball and (b) the original speed of the cue ball.
Physics
1 answer:
ikadub [295]3 years ago
7 0

(a) -39.4^{\circ}

Let's take the initial direction (before the collision) of the cue ball has positive x-direction.

Along the y-direction, the total initial momentum is zero:

p_y =0

Therefore, since the total momentum must be conserved, it must be zero also after the collision. So we write:

0 = m v_1 sin \phi_1 + m v_2 sin \phi_2 \\0 = m(4.60) sin (28^{\circ}) + m(3.40) sin \phi_2

where

m is the mass of each ball

v_1= 4.60 m/s is the velocity of the cue ball after the collision

v_2 = 3.40 m/s is the velocity of the second ball after the collision

\phi_1=28.0^{\circ} is the angle of the cue ball with the x-axis

\phi_2 is the angle of the second ball

Solving for \phi_2, we find the angle between the direction of motion of the second ball and the original direction of motion:

sin \phi_2 = -\frac{4.60 sin 28}{3.40}=-0.635\\\phi_2 = -39.4^{\circ}

(b) 6.69 m/s

To find the original speed of the cue ball, we analyze the situation along the horizontal direction.

First, we calculate the total momentum along the x-direction after the collision, which is:

p_x = m v_1 cos \phi_1 + m v_2 cos \phi_2 \\0 = m(4.60) cos (28^{\circ}) + m(3.40) cos (-39.4^{\circ})=6.69 m

The initial total momentum along the x-direction as

p_x = m u

where

m is the mass of the cue ball

u is the initial velocity of the cue ball

The momentum along this direction must be conserved, so we can equate the two expressions and find the value of u:

mu = 6.69 m\\u = 6.69 m/s

You might be interested in
The pilot of an airplane reads the altitude 6400 m and the absolute pressure 46 kPa when flying over a city. Calculate the local
olga nikolaevna [1]

Answer:

1. 6.672 kPa

2. 49.05 mm of mercury

Explanation:

h = 6400 m

Absolute pressure, p = 46 kPa = 46000 Pa

density of air, d = 0.823 kg/m^3

density of mercury, D = 13600 kg/m^3

(a) Absolute pressure = Atmospheric pressure + pressure due to height

46000 = Atmospheric pressure + h x d x g

Atmospheric pressure = 46000 - 6400 x 0.823 x 10 = 6672 Pa = 6.672 kPa

(b) To convert the pressure into mercury pressure

Atmospheric pressure = H x D x g

Where, H is the height of mercury, D be the density of mercury, g be the acceleration due to gravity

6672 = H x 13600 x 10

H = 0.04905 m

H = 49.05 mm of mercury

4 0
3 years ago
Help Me Please<br>8th grade science, one question ​
nexus9112 [7]
You can make a laser go through someone’s skin in some circumstances you can’t do that with other light sources
4 0
2 years ago
A _______ satellite records reflected wavelengths from Earth's surface
masha68 [24]
<span>A Landsat satellite records reflected wavelengths from Earth's surface<span /></span>
3 0
3 years ago
Read 2 more answers
Calculate the average force that must be exerted on a 0.145 kg baseball in order to give it an acceleration of 130 m/s^2. (round
r-ruslan [8.4K]

Answer:

18.9 <em>N or </em><em>19</em><em> N </em>rounded

Explanation:

m = 0.145 kg

a = 130 m/s^2

F = ma = (0.145 kg)(130 m/s^2) = 18.9 <em>N</em>

7 0
3 years ago
Read 2 more answers
Two identical masses are connected to two different flywheels that are initially stationary. Flywheel A is larger and has more m
inysia [295]

Answer:

a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia

c) True. Information is missing to perform the calculation

Explanation:

Let's consider solving this exercise before seeing the final statements.

We use Newton's second law Rotational

      τ = I α

     T r = I α

     T gR = I α

     Alf = T R / I (1)

     T = α I / R

Now let's use Newton's second law in the mass that descends

     W- T = m a

     a = (m g -T) / m

The two accelerations need related

     a = R α

    α = a / R

    a = (m g - α I / R) / m

    R α = g - α I /m R

    α (R + I / mR) = g

    α = g / R (1 + I / mR²)

We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant

Let's review the claims

a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia

b) False. Missing data for calculation

c) True. Information is missing to perform the calculation

d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases

4 0
3 years ago
Other questions:
  • A. Describe the mass, charge, and location of protons, neutrons, and electrons in an atom.
    8·2 answers
  • Why are pots and pans made of metals like steel and their handles made of plastic?
    8·1 answer
  • By using_______you can determine your exact position and altitude on earth?
    7·1 answer
  • Law of conservation of energy states that
    5·2 answers
  • If you want to make a strong battery, should you pair two metals with high electron affinities, low electron affinities, or a mi
    8·1 answer
  • Which is an important step in how an electric motor uses magnetic force to produce motion?
    15·2 answers
  • A block of mass m1 = 4 kg is moving at 4 m/s and collides with a block of mass m2 = 2 kg, which is moving at 5 m/s in the opposi
    10·1 answer
  • A uniform ladder of length L and weight w is leaning against a vertical wall. The coefficient of static friction between the lad
    14·1 answer
  • A) Give 3 examples of forces that are pulls and 3 examples that are pushes. b) For each example you give, state an approximate v
    7·1 answer
  • A car travels at 40 mph. what distance will it travel in 3 hours?​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!