First step is to convert the lb to kg as follows:
1 lb = 0.45 kg
Therefore, 150 lb = 150 x 0.45 = 67.5 kg
Avogadro's number = 6.02 x 10^23
Mass of Avogadro's number of people = 6.02 x 10^23 x 67.5
= 4.0635 x 10^25 kg
Answer:
Answer:
101325 + 10055.25h
//
h = 10.1 m
Explanation:
the pressure at sea level = 1 atm = 101325 Pa
density of sea water = 1025 kg/ m^(3)
pressure due to fluid height = pgh
Absolute pressure = 101325 + 1025*9.81*h
= 101325 + 10055.25h
where h= 0 at sea level at increases downwards
//
101325 = 1025* 9.81* h
h = 10.1 m
Explanation:
Explanation:
The given data is as follows.
mass (m) = 0.160 kg, spring constant (k) = 8 n/m,
Maximum speed (
) = 0.350 m/s
Formula for angular frequency is as follows.


= 7.07 rad/sec
(a) Formula to calculate the amplitude is as follows.

A = 
= 
= 0.05 m
Hence, value of amplitude is 0.05 m.
(b) Displacement = 0.030 m
Formula for mechanical energy is as follows.
M.E = 
Putting the values into the above formula as follows.
M.E = 
= 
=
Joule
For x = 0.03,
As, P.E = 
= 
= 
Hence, calculate the kinetic energy as follows.
K.E = M.E - P.E
= (
-
) J
=
J
Thus, we can conclude that kinetic energy of the puck when the displacement of the glider is 0.0300 m is
J.
Answer:
The power output of the oscillator is 0.350 watt.
Explanation:
Given that,
Diameter = 1.0 mm
Tension = 5.7 N
Frequency = 57.0 Hz
Amplitude = 0.54 cm
We need to calculate the power output of the oscillator
Using formula of the power

Put the value into the formula



Hence, The power output of the oscillator is 0.350 watt.
Newton's second law states that the product between the mass and the acceleration of an object is equal to the force applied:

from which we find an expression for the acceleration:

(1)
Both objects are moving by uniformly accelerated motion (because the force applied is constant), so we can also using the following relationship

(2)
where

is the final speed of the object

is the initial speed
S is the distance covered
By substituting (1) into (2), and by removing

(since the final velocity of the two objects is zero), we find


where we can ignore the negative sign (because the force F will bring another negative sign).
For the first object, we have
![S= \frac{(2.0 m/s)^2 (4.0 kg)}{2F} = \frac{8}{F} [m]](https://tex.z-dn.net/?f=S%3D%20%5Cfrac%7B%282.0%20m%2Fs%29%5E2%20%284.0%20kg%29%7D%7B2F%7D%20%3D%20%20%5Cfrac%7B8%7D%7BF%7D%20%5Bm%5D%20)
And for the second object we have
![S= \frac{(4.0 m/s)^2 (1.0 kg)}{2F} = \frac{8}{F} [m]](https://tex.z-dn.net/?f=S%3D%20%5Cfrac%7B%284.0%20m%2Fs%29%5E2%20%281.0%20kg%29%7D%7B2F%7D%20%3D%20%5Cfrac%7B8%7D%7BF%7D%20%5Bm%5D%20)
And since the braking force applied to the two objects is the same, the two objects cover the same distance.