1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
3 years ago
5

3(x+y)=7(y-x), 5(3x-y)=x+3​

Mathematics
2 answers:
Natasha_Volkova [10]3 years ago
8 0
3(x+y) = 7(y-x)
3x+3y = 7y-7x
3x+7x +3y -7y = 0
10x - 5y = 0 —> *7
70x-35y = 0

5(3x-y)=x+3
15x-y =x+3
15x-x-y = 3
14x -y = 3 —>*5
70x-5y =15

70x-70x-5y-(-35y) = 15
30y = 15
y = 1/2

-2.5 +10x = 0
10x = 2.5
x = 0.25



hram777 [196]3 years ago
4 0

Answer:

i am not sure thi sis the first one

You might be interested in
What is the value of x?
notsponge [240]
The value of x is 13
4 0
2 years ago
Read 2 more answers
Select the correct answer. what is this expression in simplified form? (6v2)(-3v5)
Roman55 [17]

Answer:

-180v^2

Step-by-step explanation:

multiply and calculate

3 0
2 years ago
What is the circumference of the circle below in terms of pie?
asambeis [7]
<span>We have to calculate the circumference of a circle and to choose the correct answer. The circumference of a circle is given by a formula: C = 2 r Pie. In this case radius of the circle is : r = 2.2. Therefore C = 2 * 2.2 Pie = 4.4 Pie. Answer: The circumference of the circle is: D ) 4.4 Pie.</span>
5 0
4 years ago
Read 2 more answers
Which group of numbers is listed from least to greatest?
antoniya [11.8K]

The Second row

-8/ -5/ -4 / 3 / 6

Also the Fourth one

-6/ -4/ -2/-1/0

3 0
3 years ago
Read 2 more answers
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Other questions:
  • I need help (4x/7) - 0.6= 3.6
    13·2 answers
  • Relationship between rational numbers and ratios
    15·1 answer
  • 2. One eighth of books are mystery books. He has 3 mystery books. How many books does Tony have in all l
    7·1 answer
  • How do I do problems 4-6
    6·1 answer
  • Anthony uses 1/5 cup of water for every 2/5 cup of pancake mix to make pancake batter.
    14·1 answer
  • Help I don’t understand
    14·1 answer
  • Jimmy and Lauren are
    8·1 answer
  • PLZ HELP ITS ALLREADY OVER DUE
    9·2 answers
  • Hannah has an offer from a credit card issuer for 0% APR for the first 30 days
    7·2 answers
  • <img src="https://tex.z-dn.net/?f=%20%5Clarge%5Cbegin%7Bbmatrix%7D%20%5Cbegin%7Barray%7D%20%7B%20l%20l%20%7D%20%7B%202%20%7D%20%
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!