To the left of X rays are Gamma rays and to the right if X rays ate Ultra Violet rays.
Redox reactions are those <u>chemical reactions that involve the transfer of electrons between reactants</u>, altering the <em>oxidation state</em> of their elements.
In this type of reactions an element releases electrons that another element accepts, so there is a net transfer of charge.
When balancing redox reactions, not only must the chemical elements in the reactants and products be equalized (by the <em>law of conservation of the mass</em>), but also the charged that is transferred in the process must be balanced, since <u>the electrons that are lost in oxidation are the same as those that are gained in reduction (</u><em>law of conservation of charge:</em> <em>there is no destruction or net creation of electric charge</em>).
Answer:
A should be the correct answer I'm not sure but goodluck
<u>Answer:</u> The value of
for the reaction at 550.3 K is 247.83
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For a general chemical reaction:

The expression for
is written as:
![K_{c}=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
The chemical equation for the production of methanol follows:

The expression of
for above equation follows:
![K_c=\frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)
We are given:
![[CH_3OH]=0.0401mol/L](https://tex.z-dn.net/?f=%5BCH_3OH%5D%3D0.0401mol%2FL)
![[CO]=0.02722mol/L](https://tex.z-dn.net/?f=%5BCO%5D%3D0.02722mol%2FL)
![[H_2]=0.07710mol/L](https://tex.z-dn.net/?f=%5BH_2%5D%3D0.07710mol%2FL)
Putting values in above equation, we get:

Hence, the value of
for the reaction at 550.3 K is 247.83
System to surroundings since energy is released in an exothermic reaction