Not sure good luck on finding someone too help you
4.648 gm of solute is needed to make 37.5 mL of 0.750 M KI solution.
Solution:
We will start with the Molarity

Also we know 1000 ml = 1 L
Therefore 37.5 ml by 1000ml we obtained 0.0375L
Equation for solving mole of solute

Now, multiply 0.750M by 0.0375
Substitute the known values in the above equation we get

Also we know that Molar mass of KI is 166 g/mol
So divide the molar mass value to get the no of grams.

So 4.648 gm of Solute is required for make 37.5 mL of 0.750 M KI solution.
Answer:
D. Intramolecular covalent bond
Explanation:
Compound D is structurally more rigid as a result of intramolecular covalent bonding. The forces that hold together atoms within a compound are greater as compared to forces holding two molecules together (intermolecular bonding). On the other hand Hydrogen bonds are weaker as compared to covalent bonds. Covalent bonds involve the sharing of electrons between two atoms and Hydrogen bonds are formed between a highly electronegative atom like oxygen, Flourine,Chlorine to hydrogen.
Answer:
Look at the picture.
Explanation:
On stage one binding of a substrate occurs (and also the geometry of active site may change) and water comes to the site. On stage two the hydrolisis takes place and on stage 3 products deabsorb from the enzyme.
We can solve this problem by using Henry's law.
Henry's law states that the amount of dissolved gas is proportional to its partial pressure.

C is <span>the solubility of a gas.
</span><span>k is Henry's law constant.
</span><span>P is the partial pressure of the gas.
</span>We can calculate the constant from the first piece of information and then use Henry's law to calculate solubility in open drink.
0.12=4k
k=0.03
Now we can calculate the solubility in open drink.


Now we need to convert it to g/L. One mol of CO2 is 44.01<span>g.
</span>The final answer is: