Periodic Trend:
The Atomic radius of atoms generally decreases from left to right across a period
Group Trend:
The atomic radius of atoms generally increases from top to bottom within a group. As atomic number increases down a group, there is a increase in the positive nuclear charge, however the co-occurring increase in the number of orbitals wins out, increasing the atomic radius down a group in the periodic table
Answer :
The Atom with the greatest atomic radius is chlorine. Fluorine can be ruled out because it is in the same period as oxygen and further to the right down the period. Chlorine has the largest atomic size because it is farthest down the group of any of the above elements listed.
I could only find 7!
- independent variable
- dependent variable
- control group
- experimental group
- constant
- observation
- inference
Sodium chloride is the chemical name for salt and is composed of sodium and chlorine, so it is a compound.
Answer: You’d have to convert from mol to molecule.
Explanation: Like this:
By using the formula, mass = density x volume, we
calculate mass in grams
20.0 mL CH₃COOH x (1.05 g / mL) = 21.0
g CH₃COOH
To find the moles, molar mass of CH₃COOH = 60.05g/mol<span>
21.0 g </span>CH₃COOH x (1 mole CH₃COOH / 60.05 g CH₃COOH)
= 0.350 moles CH₃COOH
To find molarity,<span>
[</span>CH₃COOH] = moles CH₃COOH / L of solution = 0.350 /
1.40 = 0.250 M CH₃COOH<span>
When </span>CH₃COOH is dissolved in water, it produces
small and equal amounts of H₃O⁺+ and C₂H₃O₂⁻.
<span>
Molarity , </span>CH₃COOH<span> + H</span>₂O <==> H₃O⁺ + C₂H₃O₂⁻
<span>
<span>Initial 0.250 0 0 </span>
Change -x x x
Equilibrium 0.250-x x x
K</span>ₐ = [H₃O⁺][C₂H₃O₂⁻] / [HC₂H₃O₂] = (x)(x) /
(0.250-x) = 1.8 x 10⁻⁵
<span>Since K</span>ₐ is relatively small, we can neglect the -x
term after 0.250 to simplify
<span>x</span>² / 0.250 = 1.8 x 10⁻⁵
x² = 4.5 x 10⁻⁶
<span>
x = 2.1 x 10</span>⁻³<span> = [H</span>₃O⁺]
pH = -log [H₃O⁺] = -log (2.1 x 10⁻³) = 2.68