Answer:
8
Explanation:
From the question given above, the following data were obtained:
t–butyl ion = (CH₃)₃C⁺
Number of valence electron =?
The valence electron(s) talks about the combining power of an element or compound as the case may be.
Considering the t–butyl ion, (CH₃)₃C⁺ we can see that it has a charge of +1 indicating that it has given out 1 electron to attain the stable octet configuration which has a valence electrons of 8. Thus, the valence electron of t–butyl ion, (CH₃)₃C⁺ is 8
Moving down in a group, the electronegativity decreases due to an increase in the distance between the nucleus and the valence electron shell, thereby decreasing the attraction, making the atom have less of an attraction for electrons or protons.
<h3>
Answer:</h3>
The centripetal acceleration is 26.38 m/s²
<h3>
Explanation:</h3>
We are given;
- Mass of rubber stopper = 13 g
- Length of the string(radius) = 0.93 m
- Time for one revolution = 1.18 seconds
We are required to calculate the centripetal acceleration.
To get the centripetal acceleration is given by the formula;
Centripetal acc = V²/r
Where, V is the velocity and r is the radius.
Since time for 1 revolution is 1.18 seconds,
Then, V = 2πr/t, taking π to be 3.142 ( 1 revolution = 2πr)
Therefore;
Velocity = (2 × 3.142 × 0.93 m) ÷ 1.18 sec
= 4.953 m/s
Thus;
Centripetal acceleration = (4.953 m/s)² ÷ 0.93 m
= 26.38 m/s²
Hence, the centripetal acceleration is 26.38 m/s²
Looking at a ph level color chart, it should be moving to more acidic if it’s positive