Answer:
286 kPa
Explanation:
Boyles law states that volume of gas is inversely proportional to pressure o gas for a fixed amount of gas at constant temperature
P1V1 = P2V2
where P1 is pressure and V1 is volume at first instance
P2 is pressure and V2 is volume at the second instance
substituting the values in the equation
229 kPa x 4.0 L = P2 x 3.2 L
P2 = 286.25 kPa
the new pressure is 286 kPa
b. increase in surface area
<h3>Further explanation</h3>
Given
Speeding up a chemical reaction
Required
Factors used to speed up reactions
Solution
There are several factors that influence reaction kinetics :
1. Concentration
2. Surface area
3. Temperature
4. Catalyst
5. Pressure
6. Stirring
Temperature is related to the kinetic energy of the particles. Heat is absorbed causes the particles of matter to move faster so that the reaction can take place faster
The enlarged surface area of the reactants causes more particles to react with other particles.
50 g square block of sulfur can be broken into small pieces or powdered so that more particles come into contact with each other
Answer:
Cool air moves down while hot air rises
Answer:
Surface area
Explanation:
psi = pound square inch
Often expres in psi, pressure s the term for force per unit of surface area.
Answer:
P2 = 352 mm Hg (rounded to three significant figures)
Explanation:
PV = nRT
where P is the pressure,
V is the volume,
n is the moles of gas,
R is the gas constant,
and T is the temperature.
We must relate this equation to a sample of gas at two different volumes however. Looking at the equation, we can relate the change in volume by:
P1V1 = P2V2
where P1 is the initial pressure,
V1 is the initial volume,
P2 is the final pressure,
and V2 is the final volume.
Looking at this relationship, pressure and volume have an indirect relationship; when one goes up, the other goes down. In that case, we can use this equation to solve for the new pressure.
P1V1 = P2V2
(759 mm Hg)(1.04 L) = P2(2.24 L)
P2 = 352 mm Hg (rounded to three significant figures)