The balanced equation for the reaction is
CO(g) + 2H₂(g) ⇄ CH₃<span>OH(g)
Since given concentrations are at equilibrium state, the expression for the equilibrium constant, k can be written as
k = [</span>CH₃OH(g)] / [CO(g)] [H₂(g) ]²
By substitution,
k = 0.030 M / 0.020 M x (<span>0.072 M</span>)²
k = 289.35 M⁻²
Answer:
Use the activity formula,
T1/2 = 4.468 x 10^9 yr x 365 x 24 x 3600 = 1.409 x 10^17 sec
l = ln(2)/T1/2 = ln(2)/1.409 x 10^17 = 4.91932697 x 10^-18 s-1
DN/Dt = lN, 265 = 4.91932697 x 10^-18 x N
<u><em>N = 5.38 x 10^19 nuclei</em></u>
River sources tend to be at the top of mountains or areas of high elevation. This means that rivers impact the entire terrain from mountains to seas and oceans.
I hope this Helps!
Explanation:
Which of the following is not a postulate of the kinetic molecular theory?
Answer is
option D. the collisions between gas molecules are elastic
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em>
Answer:
2Ag + H2O -----> Ag2O + 2H
Explanation:
2Ag + H2O -----> Ag2O + 2H is the equation of the reaction between metal and steam. Silver reacts with water (steam) forming silver oxide and hydrogen gas. When the metals react with steam it produces the solid metal oxide and hydrogen gas. On the surface o metals, a protective layer of aluminium oxide is formed that keeps water away from the metal so we can say that silver oxide and hydrogen are formed from the reaction of silver metal and steam.