Answer:
4 should be the answer to the question
Answer:

Step-by-step explanation:
<u>Given that,</u>
3 hours = 180 miles
Divide 3 to both sides
3/3 hour = 180/3 miles
1 hour = 60 miles
So, Mom drove 60 miles in one hour.
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
-10, 10, 25, 25, 25, 32, 32, 32
Its 25
Step-by-step explanation:
The median is the middle number if there are an even amount of numbers you would have two medians add them the divide by two
Answer:
<h3>87 feet</h3><h3>1. You can find the value of the vertex of the parabola as following:
</h3><h3 /><h3 /><h3 /><h3>2. Substitute values:
</h3><h3 /><h3>a=-16
</h3><h3 /><h3>b=70
</h3><h3 /><h3>Then:
</h3><h3 /><h3> </h3><h3 /><h3 /><h3 /><h3>3. Substitute the value obtained into the equation given in the problem. Therefore, you obtain the following result:
</h3><h3 /><h3 /><h3 /><h3>4. To the nearest foot:
</h3><h3 /><h3>h=87 feet</h3>
Step-by-step explanation:
<h3>#hopeithelps</h3><h3>stay safe and keep well</h3><h3 /><h3>mark me as brain liest pls</h3>
Answer:

Step-by-step explanation:
We want to find the Riemann sum for
with n = 6, using left endpoints.
The Left Riemann Sum uses the left endpoints of a sub-interval:

where
.
Step 1: Find 
We have that 
Therefore, 
Step 2: Divide the interval
into n = 6 sub-intervals of length 
![a=\left[0, \frac{\pi}{8}\right], \left[\frac{\pi}{8}, \frac{\pi}{4}\right], \left[\frac{\pi}{4}, \frac{3 \pi}{8}\right], \left[\frac{3 \pi}{8}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{5 \pi}{8}\right], \left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]=b](https://tex.z-dn.net/?f=a%3D%5Cleft%5B0%2C%20%5Cfrac%7B%5Cpi%7D%7B8%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B%5Cpi%7D%7B8%7D%2C%20%5Cfrac%7B%5Cpi%7D%7B4%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B%5Cpi%7D%7B4%7D%2C%20%5Cfrac%7B3%20%5Cpi%7D%7B8%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B3%20%5Cpi%7D%7B8%7D%2C%20%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B%5Cpi%7D%7B2%7D%2C%20%5Cfrac%7B5%20%5Cpi%7D%7B8%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B5%20%5Cpi%7D%7B8%7D%2C%20%5Cfrac%7B3%20%5Cpi%7D%7B4%7D%5Cright%5D%3Db)
Step 3: Evaluate the function at the left endpoints






Step 4: Apply the Left Riemann Sum formula

