Answer : The time taken for the reaction is, 28 s.
Explanation :
Expression for rate law for first order kinetics is given by :
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 0.0632
t = time taken for the process = ?
= initial amount or concentration of the reactant = 1.28 M
= amount or concentration left time 't' = 
Now put all the given values in above equation, we get:


Therefore, the time taken for the reaction is, 28 s.
Answer:
½O 2 + 2e - + H 2O → 2OH.
Explanation:
Redox reactions - Higher
In terms of electrons:
oxidation is loss of electrons
reduction is gain of electrons
Rusting is a complex process. The example below show why both water and oxygen are needed for rusting to occur. They are interesting examples of oxidation, reduction and the use of half equations:
iron loses electrons and is oxidised to iron(II) ions: Fe → Fe2+ + 2e-
oxygen gains electrons in the presence of water and is reduced: ½O2 + 2e- + H2O → 2OH-
iron(II) ions lose electrons and are oxidised to iron(III) ions by oxygen: 2Fe2+ + ½O2 → 2Fe3+ + O2-
Isn't this a math problem?
If it is the the answer should be 102.
10 decimeters=1 meter
27x10=270
270-168=102
Answer:
The square root of the molar mass of B ÷ the square root of the molar mass of A
Explanation:
Graham’s Law applies to the effusion of gases:
The rate of effusion (r) of a gas is inversely proportional to the square root of its molar mass (M).
If you have two gases A and B, the ratio of their rates of effusion is
