That the pupl is smaller than the nulian hope this helped
The surface is frictionless, so there is no frictional force acting on the ball. There are no other forces acting on the ball in the horizontal direction, so it's a uniform motion with constant speed. Therefore, the velocity of the ball will remain the same for the entire duration of the motion, and so after 5 seconds the velocity is still 15 m/s.
Answer:
a) if we assume that the water does not spill, Beaker B weighs more than beaker S, or which in this case Beaker A weighs more
b) If it is spilled in water the weight of the two beakers is the same
Explanation:
The beaker weight is
beaker A
W_total = W_ empty + W_water
Beaker B
W_total = W_ empty + W_water + W_roca
a) if we assume that the water does not spill, Beaker B weighs more than beaker S, or which in this case Beaker A weighs more
b) If it is spilled in water, the weight of the two beakers is the same because the amount of liquid spilled and equal to the weight of the stone, therefore the two beakers weigh the same
Acceleration = (change in speed) / (time for the change)
change in speed = (ending speed) - (starting speed)
change in speed = (10 m/s) - (2 m/s) = 8 m/s
Acceleration = (8 m/s) / (4 sec)
Acceleration = (8/4) (m/s²)
<em>Acceleration = 2 m/s²</em>
Answer:
The tension is 75.22 Newtons
Explanation:
The velocity of a wave on a rope is:
(1)
With T the tension, L the length of the string and M its mass.
Another more general expression for the velocity of a wave is the product of the wavelength (λ) and the frequency (f) of the wave:
(2)
We can equate expression (1) and (2):
=
Solving for T
(3)
For this expression we already know M, f, and L. And indirectly we already know λ too. On a string fixed at its extremes we have standing waves ant the equation of the wavelength in function the number of the harmonic
is:

It's is important to note that in our case L the length of the string is different from l the distance between the pin and fret to produce a Concert A, so for the first harmonic:

We can now find T on (3) using all the values we have:

