Answer:
a

b

Explanation:
From the question we are told that
The child's weight is 
The length of the sliding surface of the playground is 
The coefficient of friction is 
The angle is 
The initial speed is 
Generally the normal force acting on the child is mathematically represented as
=> 
Note 
Generally the frictional force between the slide and the child is

Generally the resultant force acting on the child due to her weight and the frictional force is mathematically represented as

Here F is the resultant force and it is represented as 
=> 
=> 
=> 
=>
So

=> 
Generally the heat energy generated by the frictional force which equivalent tot the workdone by the frictional force is mathematically represented as

=> 
=> 
Generally from kinematic equation we have that

=> 
=> 
=> 
Given data
*The given 4th harmonic frequency is 31.5 Hz
The fundamental frequency is calculated as

Hence, the fundamental frequency is 7.875 Hz
the same with that of products
Explanation:
In a chemical reaction, the total charge of the reactants must be the same with that of products.
Charges must be conserved or balanced in chemical reactions.
- In both acidic and basic/neutral medium electrons are used to balance the charge.
- The appropriate number of electrons is added to the side with a larger charge.
- One electron is used to balance each positive charge.
- This ensures that the sum of charges on both sides the same.
Learn more:
Balanced equation brainly.com/question/5297242
#learnwithBrainly
Answer:
Option A is correct.
(The faster object encounters more resistance)
Explanation:
Option A is correct. (The faster object encounters more resistance)
Air resistance depends on various factors:
- Speed of the object
- Cross-sectional area of the object
- Shape of the object
Formula:

As the speed of the object increases the amount of Air resistance/drag increases on the object, as the above formula shows direct relation between Air resistance/drag and velocity i.e F ∝ v^2.
Answer:
ΔE> E_minimo
We see that the field difference between these two flowers is greater than the minimum field, so the bee knows if it has been recently visited, so the answer is if it can detect the difference
Explanation:
For this exercise let's use the electric field expression
E = k q / r²
where k is the Coulomb constant that is equal to 9 109 N m² /C², q the charge and r the distance to the point of interest positive test charge, in this case the distance to the bee
let's calculate the field for each charge
Q = 24 pC = 24 10⁻¹² C
E₁ = 9 10⁹ 24 10⁻¹² / 0.20²
E₁ = 5.4 N / C
Q = 32 pC = 32 10⁻¹² C
E₂ = 9 10⁹ 32 10⁻¹² / 0.2²
E₂ = 7.2 N / C
let's find the difference between these two fields
ΔE = E₂ -E₁
ΔE = 7.2 - 5.4
ΔE = 1.8 N / C
the minimum detection field is
E_minimum = 0.77 N / C
ΔE> E_minimo
We see that the field difference between these two flowers is greater than the minimum field, so the bee knows if it has been recently visited, so the answer is if it can detect the difference