Convection occurs through heat transfer due to a difference in density in the fluids.
Consider a pot of water being heated. The water in the pot gets heated rises ,it provides energy for the particles in the water to move and thus the water expands which results in the density of the water becoming less. These particles rise up till the top of the pot owing to the property of very less density of the particles.
Then after some time, it cools down which results in increase of the density of the particles. The heavier denser particles sink to the bottom and is once again heated and rises and this process continues unless all the water particles in the pot are heated and warmed.This transfer of energy by the movement of particles cause convection.
During the day the heat surface above the earth exposed to the sun's rays is heated. This rise in temperature,decreases the density of the air and the warm air rises.
This air cools down and becomes denser. This dense cool air sink back and forces the warm air to rise again.
This transfer of movement of particles causes convection. This cycle is the cause of winds and thus energy is transferred through the atmosphere.
Answer:
The current in the heater is 12.5 A
Explanation:
It is given that,
Power of electric heater, P₁ = 1400 W
Power of toaster, P₂ = 1150 W
Power of electric grill, P₃ = 1560 W
All three appliances are connected in parallel across a 112 V emf source. We need to find the current in the heater. We know that in parallel combination of resistors the current flowing in every branch of resistor divides while the voltage is same.
Electric power, ![P_1=V\times I_1](https://tex.z-dn.net/?f=P_1%3DV%5Ctimes%20I_1)
![I_1=\dfrac{P_1}{V}](https://tex.z-dn.net/?f=I_1%3D%5Cdfrac%7BP_1%7D%7BV%7D)
![I_1=\dfrac{1400\ W}{112\ V}](https://tex.z-dn.net/?f=I_1%3D%5Cdfrac%7B1400%5C%20W%7D%7B112%5C%20V%7D)
![I_1=12.5\ A](https://tex.z-dn.net/?f=I_1%3D12.5%5C%20A)
So, the current in the heater is 12.5 A. Hence, this is the required solution.
I think its either C or D. I tried, couldn't figure the last part out. Hope this helped though!! Have a great day! :D
Answer:
Based off the word "conserved" I would say
A. Conservation of Momentum.
Explanation:
Answer:
8F_i = 3F_f
Explanation:
When two identical spheres are touched to each other, they equally share the total charge. Therefore, When neutral C is first touch to A, they share the initial charge of A equally.
Let us denote that the initial charge of A and B are Q. Then after C is touched to A, their respective charges are Q/2.
Then, C is touched to B, and they share the total charge of Q + Q/2 = 3Q/2. Their respective charges afterwards is 3Q/4 each.
The electrostatic force, Fi, in the initial configuration can be calculated as follows.
![F_i = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{Q^2}{r^2}[/tex}The electrostatic force, Ff, in the final configuration is [tex]F_f = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{3Q^2/8}{r^2}[/tex}Therefore, the relation between Fi and Ff is as follows[tex]F_i = F_f\frac{3}{8}\\8F_i = 3F_f](https://tex.z-dn.net/?f=F_i%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7Bq_Aq_B%7D%7Br%5E2%7D%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7BQ%5E2%7D%7Br%5E2%7D%5B%2Ftex%7D%3C%2Fp%3E%3Cp%3EThe%20electrostatic%20force%2C%20Ff%2C%20in%20the%20final%20configuration%20is%20%3C%2Fp%3E%3Cp%3E%5Btex%5DF_f%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7Bq_Aq_B%7D%7Br%5E2%7D%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B3Q%5E2%2F8%7D%7Br%5E2%7D%5B%2Ftex%7D%3C%2Fp%3E%3Cp%3ETherefore%2C%20the%20relation%20between%20Fi%20and%20Ff%20is%20as%20follows%3C%2Fp%3E%3Cp%3E%5Btex%5DF_i%20%3D%20F_f%5Cfrac%7B3%7D%7B8%7D%5C%5C8F_i%20%3D%203F_f)