Answer:
Please, in the Explanation section you will find the explanation of the answer.
Explanation:
The exercise shows the continental United States and 3 cities used in the study carried out by Murdock. It can be said that the sample taken is part of the objective. There are several inconsistencies in Murdock's argument: the first has to do with the fact that the sample that was taken cannot represent the entire American population. A much larger, scientifically calculated sample would be required. The second is that their study did not take into account small cities or people living in the interior of the United States.
The final temperature is 83 K.
<u>Explanation</u>:
For an adiabatic process,


Given:-



(the gas is monoatomic)

T = 275
0.30
T = 83 K.
Answer:
1).atoms (3). mixture. (5). Element
2). particles (4). molecules (6). suspension
Explanation:
(7). Homogeneous (8). Heterogeneous
(9). compound (10). solutions
Answer:
The Heavier Firefighter
Explanation:
Generally, more massive objects will have more intertia than less massive objects. As such it takes more force to halt a more massive object if its moving at the same speed as a smaller object. This can also be thought of in the context of Newton's second law. The more force needed to accelerate an object means the more force the object will have.
A) d. 10T
When a charged particle moves at right angle to a uniform magnetic field, it experiences a force whose magnitude os given by

where q is the charge of the particle, v is the velocity, B is the strength of the magnetic field.
This force acts as a centripetal force, keeping the particle in a circular motion - so we can write

which can be rewritten as

The velocity can be rewritten as the ratio between the lenght of the circumference and the period of revolution (T):

So, we get:

We see that this the period of revolution is directly proportional to the mass of the particle: therefore, if the second particle is 10 times as massive, then its period will be 10 times longer.
B) 
The frequency of revolution of a particle in uniform circular motion is

where
f is the frequency
T is the period
We see that the frequency is inversely proportional to the period. Therefore, if the period of the more massive particle is 10 times that of the smaller particle:
T' = 10 T
Then its frequency of revolution will be:
