...............................................c
Δ H reaction = q / n where q: amount of heat released and n is number of moles of substance.
q = m . C . ΔT where:
m = mass of substance (g)
C = Specific heat capacity (4.18)
ΔT = change in temperature = 24.25 - 23.16 = 1.09
q = 1000 x 4.18 x 1.09 = 4556 J = 4.556 kJ
number of moles (n) = Molarity (M) x Volume (L)
= 0.185 M x 0.07 L = 0.01295 mole
Δ H = q / n = - (4.556 kJ / 0.01295 mole) = -351.8 kJ / mol
Note: it is exothermic reaction (-ve sign) i.e. temperature is raised
Answer:
pH + pOH = 14, [H₃0⁺] [0H⁻] = 10⁻¹⁴
Explanation:
When it comes to questions involving pH, the equations used are;
[H₃0⁺] [0H⁻] = 10⁻¹⁴
This equation shows the concentration of hydroxonium ions alongside that of the hydroxide ions.
pH + pOH = 14
If the value of either the pH of the pOH is know,one can calculate the value of the other using this equation.
Answer: Option (A) is the correct answer.
Explanation:
Elements present in group 1 are known as alkali metals. Whereas elements present in group 2 are called alkaline earth metals and elements from group 11 to 12 are transition metals.
As it is known that metals have the ability to lose electrons in order to attain stability and electricity is the flow of electrons from one point to another.
Therefore, metals are good conductors of heat and electricity.
Thus, we can conclude that the statement it’s between groups 1 to 12 because it is metal best explains the probable position of the substance in the periodic table.
Acids are substances that can donate H+ ions to bases. Since a hydrogen atom is a proton and one electron, technically an H+ ion is just a proton. So an acid is a "proton donor", and a base is a "proton acceptor". The reaction between an acid and base is essentially a proton transfer.
The relationship between acids and bases is more aggressive than the donor/acceptor terminology implies. Bases don't passively "accept" protons; they rip hydrogen ions from acids. Acids don't "donate" hydrogen ions; they surrender them.