Ans: 15.1 grams
Given reaction:
Na2CO3 + Ca(OH)2 → 2NaOH + CaCO3
Mass of Na2CO3 = 20.0 g
Molar mass of Na2CO3 = 105.985 g/mol
# moles of Na2CO3 = 20/105.985 = 0.1887 moles
Based on the reaction stoichiometry: 1 mole of Na2CO3 produces 2 moles of NaOH
# moles of NaOH produced = 0.1887*2 = 0.3774 moles
Molar mass of NaOH = 22.989 + 15.999 + 1.008 = 39.996 g/mol
Mass of NaOH produced = 0.3774*39.996 = 15.09 grams
The dissolving power of water is very important for life on Earth. Wherever water goes, it carries dissolved chemicals, minerals, and nutrients that are used to support living things. Because of their polarity, water molecules are strongly attracted to one another, which gives water a high surface tension
Answer:
The only PH range which is not covered by any of the given components of the universal indicator is 7.6-8.0
Hence the PH range 7.6-8 can't be described using universal indicator.
Answer:
See below
Step-by-step explanation:
Matter is either a <em>pure substance</em> or a <em>mixture.
</em>
Pure substances
- Are composed of one type of atom or molecule.
- Have a constant chemical composition
- Have fixed chemical properties
- Have fixed physical properties
• For example, melting point, boiling point, density, solubility
Mixtures:
- Consist of two or more substances not chemically combined
- Have a variable composition
- Can be separated into two or more components by physical means
• For example, filtration, distillation, centrifugation
- Each component retains its own properties
Answer:
136.63 °C
Explanation:
ΔTb=Tb solution - Tb pure
Where; Tb pure = 133.60°C
molar mass of solute = 121.14 g/mol
number of moles of solute; 52.2g/121.14 g/mol = 0.431 moles
molality = 0.431 moles/350 * 10^-3 = 1.23 molal
Then;
ΔTb = Kb * m * i
Kb = 2.46°C kg mol^-1
m = 1.23 molal
i = 1
ΔTb = 2.46 * 1.23 * 1
ΔTb = 3.03 °C
Hence;
Tb solution = ΔTb + Tb pure
Tb solution = 3.03 °C + 133.60°C
Tb solution = 136.63 °C