1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sattari [20]
3 years ago
8

A cart, which has a mass of 2.30 kg is sitting at the top of an inclined plane, which is 4.50 meters long and meets the horizont

al at an angle of 14.0º. The car is then allowed to roll to the bottom of the incline;
a. What was the gravitational energy of the cart before it rolls down the incline?
b. What will be the magnitude of the force that tends to cause the cart to accelerate down the incline?
c. What will be the acceleration of the cart as it moves down the incline?
d. How much time to it take for the cart to reach the bottom of the incline?
e. What will be the velocity of the cart as it reaches the bottom of the incline?
f. What will be the kinetic energy of the cart as it reaches the bottom of the incline?
g. How much work was done by the gravitational force on the cart as it rolls to the bottom of the incline?

Physics
1 answer:
expeople1 [14]3 years ago
4 0

Answer:

a) The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) The magnitude of the force that causes the cart to roll down is 5.47 N.

c) The acceleration of the cart is 2.38 m/s²

d) It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

g) The work done by the gravitational force is 24.6 J.

Explanation:

Hi there!

a) The gravitational potential energy is calculated using the following equation:

EP = m · g · h

Where:

EP = gravitational potential energy.

m = mass of the object.

g = acceleration due to gravity.

h = height at which the object is located.

The height of the inclined plane can be calculated using trigonomoetry:

sin 14.0° = height / lenght

sin 14.0° = height / 4.50 m

4.50 m · sin 14.0° = height

height = 1.09 m

Then, the gravitational potential energy will be:

EP = m · g · h

EP = 2.30 kg · 9.81 m/s² · 1.09 m = 24.6 J

The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) Please, see the attached figure for a graphical description of the problem and the forces acting on the cart. The force that causes the cart to accelerate down the incline is the horizontal component of the weight (Fwx in the figure). The magnitude of this force can be obtained using trigonometry:

sin 14° = Fwx / Fw

The weight of the cart (Fw) is calculated as follows:

Fw = m · g

Fw = 2.30 kg · 9.81 m/s²

Fw = 22.6 N

Then, the x-component of the weight will be:

FW · sin 14° = Fwx

22.6 N · sin 14° = Fwx

Fwx = 5.47 N

The magnitude of the force that causes the cart to roll down is 5.47 N.

c)Using the equation of Fwx we can calculate the acceleration of the cart:

Fwx = m · a

Where "m" is the mass of the cart and "a" is the acceleration.

Fwx / m = a

5.47 N / 2.30 kg = a

a = 2.38 m/s²

The acceleration of the cart is 2.38 m/s²

d) To calculate the time it takes the cart to reach the bottom of the incline, let´s use the equation of position of the cart:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of the cart at time t.

x0 = initial position.

v0 = initial velocity.

a = acceleration.

t = time.

Considering the initial position as the point at which the cart starts rolling (x0 = 0) and knowing that the cart starts from rest (v0 = 0), let´s find the time it takes the cart to travel the 4.50 m of the inclined plane:

x = 1/2 · a · t²

4.50 m = 1/2 · 2.38 m/s² · t²

2 · 4.50 m / 2.38 m/s² = t²

t = 1.94 s

It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane can be obtained using the following equation:

v = v0 + a · t

v = 0 m/s + 2.38 m/s² · 1.94 s

v = 4.62 m/s

The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy can be calculated using the following equation:

KE = 1/2 · m · v²

Where:

KE =  kinetic energy.

m = mass of the cart.

v = velocity of the cart.

KE = 1/2 · 2.30 kg · (4.62 m/s)²

KE = 24.6 J

The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

The gain of kinetic energy is equal to the loss of gravitational potential energy.

g) The work done by the gravitational force can be calculated using the work-energy theorem: the work done by the gravitational force is equal to the negative change in the gravitational potential energy:

W = -ΔPE

W = -(final potential energy - initial potential energy)

W = -(0 - 24.6 J)

W = 24.6 J

This can also be calculated using the definition of work:

W = Fw · d

Where "d" is the distance traveled in the direction of the force, that is the height of the inclined plane:

W = 22.6 N · 1.09 m = 24.6 J.

The work done by the gravitational force is 24.6 J.

You might be interested in
What difference will you get from the flying or air filled balloon and the hydrogen filled balloon.​
mash [69]

Answer:

the hydrogen filled balloon is denser than the air filled balloon

6 0
3 years ago
A solenoid 91.0 cm long has a radius of 1.50 cm and a winding of 1300 turns; it carries a current of 3.60 A. Calculate the magni
irinina [24]

The magnitude of the magnetic field inside the solenoid is 6.46 \times 10^{-3} \ T.

The given parameters;

  • <em>length of the solenoid, L = 91 cm = 0.91 m</em>
  • <em>radius of the solenoid, r = 1.5 cm = 0.015 m</em>
  • <em>number of turns of the solenoid, N = 1300 </em>
  • <em>current in the solenoid, I = 3.6 A</em>

The magnitude of the magnetic field inside the solenoid is calculated as;

B = \mu_0 nI\\\\B = \mu_o(\frac{ N}{L} )I\\\\

where;

\mu_o is the permeability of frees space = 4π x 10⁻⁷ T.m/A

B = (4\pi \times 10^{-7}) \times (\frac{1300}{0.91} ) \times 3.6\\\\B = 6.46 \times 10^{-3} \ T

Thus, the magnitude of the magnetic field inside the solenoid is 6.46 \times 10^{-3} \ T.

Learn more here:brainly.com/question/17137684

7 0
2 years ago
What conclusions can be drawn about the existence of nitrogen-14 and nitrogen-15? A) They are isotopes of nitrogen and they cont
AleksandrR [38]
<span>Answer: A) They are isotopes of nitrogen and they contain the same number of protons and electrons but each contains a different number of neutrons - 7 and 8 respectively.

Isotopes are atoms of a chemical element whose nucleus has the same atomic number, Z, but different atomic mass, A. The atomic number corresponds to the number of protons in the atom, therefore the isotopes of an element contain the same number of protons and electrons (atoms have to be neutral particles). The difference in atomic masses arises from the difference in the number of neutrons in the atomic nucleus.
</span>
5 0
3 years ago
Read 2 more answers
Calculate the frequency of yellow light with a wavelength of 580x10 to the -9
aniked [119]
5.2x10¹⁴ hz is your answer.
3 0
3 years ago
All exciting matter and space are referred to as the(?) whats the missing word
just olya [345]
Referred to as the universe
7 0
3 years ago
Read 2 more answers
Other questions:
  • Interest groups representing businesses and investors are often among the most successful lobbying groups in foreign policy. Why
    15·1 answer
  • Why are bells made up of metals instead of wood?
    12·1 answer
  • What are the only elements that exist in nature as isolated atoms
    8·1 answer
  • Calcium-51 has a half-life of 4.5 days. Only 0.75 gram remains of a sample that was initially 12 grams. How old is the sample of
    6·2 answers
  • One man wanted to weigh the air. He blew a balloon and weighed it. Then he blew air out of the balloon and weighed again. The we
    5·1 answer
  • Another one! Your kind of gonna need it.
    11·2 answers
  • If the first stage provides a thrust of 5.31 ​mega-newtons [MN] and the space shuttle has a mass of 5,760,000 ​pound-mass ​[lbm​
    7·1 answer
  • . Reem took a wire of length 10 cm. Her friend Nain took a wire of 5 cm of the same material and thickness both of them connecte
    5·1 answer
  • show how three identical 6 resistors must be connected tho have the following effective resistance values 9 and 4 ohms​
    5·1 answer
  • Prove: <br>1) p=dhg <br>.........<br>​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!