1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sattari [20]
4 years ago
8

A cart, which has a mass of 2.30 kg is sitting at the top of an inclined plane, which is 4.50 meters long and meets the horizont

al at an angle of 14.0º. The car is then allowed to roll to the bottom of the incline;
a. What was the gravitational energy of the cart before it rolls down the incline?
b. What will be the magnitude of the force that tends to cause the cart to accelerate down the incline?
c. What will be the acceleration of the cart as it moves down the incline?
d. How much time to it take for the cart to reach the bottom of the incline?
e. What will be the velocity of the cart as it reaches the bottom of the incline?
f. What will be the kinetic energy of the cart as it reaches the bottom of the incline?
g. How much work was done by the gravitational force on the cart as it rolls to the bottom of the incline?

Physics
1 answer:
expeople1 [14]4 years ago
4 0

Answer:

a) The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) The magnitude of the force that causes the cart to roll down is 5.47 N.

c) The acceleration of the cart is 2.38 m/s²

d) It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

g) The work done by the gravitational force is 24.6 J.

Explanation:

Hi there!

a) The gravitational potential energy is calculated using the following equation:

EP = m · g · h

Where:

EP = gravitational potential energy.

m = mass of the object.

g = acceleration due to gravity.

h = height at which the object is located.

The height of the inclined plane can be calculated using trigonomoetry:

sin 14.0° = height / lenght

sin 14.0° = height / 4.50 m

4.50 m · sin 14.0° = height

height = 1.09 m

Then, the gravitational potential energy will be:

EP = m · g · h

EP = 2.30 kg · 9.81 m/s² · 1.09 m = 24.6 J

The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) Please, see the attached figure for a graphical description of the problem and the forces acting on the cart. The force that causes the cart to accelerate down the incline is the horizontal component of the weight (Fwx in the figure). The magnitude of this force can be obtained using trigonometry:

sin 14° = Fwx / Fw

The weight of the cart (Fw) is calculated as follows:

Fw = m · g

Fw = 2.30 kg · 9.81 m/s²

Fw = 22.6 N

Then, the x-component of the weight will be:

FW · sin 14° = Fwx

22.6 N · sin 14° = Fwx

Fwx = 5.47 N

The magnitude of the force that causes the cart to roll down is 5.47 N.

c)Using the equation of Fwx we can calculate the acceleration of the cart:

Fwx = m · a

Where "m" is the mass of the cart and "a" is the acceleration.

Fwx / m = a

5.47 N / 2.30 kg = a

a = 2.38 m/s²

The acceleration of the cart is 2.38 m/s²

d) To calculate the time it takes the cart to reach the bottom of the incline, let´s use the equation of position of the cart:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of the cart at time t.

x0 = initial position.

v0 = initial velocity.

a = acceleration.

t = time.

Considering the initial position as the point at which the cart starts rolling (x0 = 0) and knowing that the cart starts from rest (v0 = 0), let´s find the time it takes the cart to travel the 4.50 m of the inclined plane:

x = 1/2 · a · t²

4.50 m = 1/2 · 2.38 m/s² · t²

2 · 4.50 m / 2.38 m/s² = t²

t = 1.94 s

It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane can be obtained using the following equation:

v = v0 + a · t

v = 0 m/s + 2.38 m/s² · 1.94 s

v = 4.62 m/s

The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy can be calculated using the following equation:

KE = 1/2 · m · v²

Where:

KE =  kinetic energy.

m = mass of the cart.

v = velocity of the cart.

KE = 1/2 · 2.30 kg · (4.62 m/s)²

KE = 24.6 J

The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

The gain of kinetic energy is equal to the loss of gravitational potential energy.

g) The work done by the gravitational force can be calculated using the work-energy theorem: the work done by the gravitational force is equal to the negative change in the gravitational potential energy:

W = -ΔPE

W = -(final potential energy - initial potential energy)

W = -(0 - 24.6 J)

W = 24.6 J

This can also be calculated using the definition of work:

W = Fw · d

Where "d" is the distance traveled in the direction of the force, that is the height of the inclined plane:

W = 22.6 N · 1.09 m = 24.6 J.

The work done by the gravitational force is 24.6 J.

You might be interested in
How do i write newton's second law for parallel directions
Paha777 [63]

Answer:

Just copy and paste

Explanation:

It will work.

8 0
3 years ago
what’s 55mph to km/min? can someone explain to to me with the work so i can understand how to solve this
natali 33 [55]

Answer:

55 miles / hour = 1.475232 kilometers / minute

6 0
3 years ago
Read 2 more answers
Can you guys please help me on this one?​
LenKa [72]

If the object is not at rest how?

4 0
2 years ago
Read 2 more answers
A theory was not originally a hypothesis. true or false?
Anna11 [10]
The answer is false. many famouse scientist used the very scientific theory that we use today
3 0
3 years ago
What is an independent variable?
Natali5045456 [20]

Answer:

The answer is A

Explanation:

Independent variables don't have to depend on other factors of the experiment because they're independent

4 0
3 years ago
Other questions:
  • What is the value of work done on an object when a 70-newton force moves it 9.0 meters in the same direction as the force?
    8·2 answers
  • what are the various ways in which lithospheric plates interact with each other as they move around on a dynamic earth??
    5·1 answer
  • Which of the following minerals maintains healthy fluid balance?
    13·2 answers
  • An electron and a proton are held on an x axis, with the electron at x = + 1.000 m and the proton at x = - 1.000 m. How much wor
    12·1 answer
  • Reviewing old tests and quizzes will not help you determine what will be on a test because teachers don’t like to give students
    12·2 answers
  • The driver of a car moving at 90.0 km/h presses down on the brake as the car enters a circular curve of radius 195.0 m. If the s
    6·1 answer
  • Astronomersestimatethata2.0-km-diameterasteroidcollides with the Earth once every million years. The collision could pose a thre
    7·2 answers
  • Imagine you are studying the turgor pressure at two different ends of a sieve tube. One end of the sieve tube is located within
    14·1 answer
  • A 2.85 kg fish is attached to the lower end of a vertical spring that has negligible mass and force constant 875 N/m. The spring
    13·1 answer
  • Explane Information-processing approach
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!