Answer:
Hydrogen and helium compounds.
Explanation:
We know that the solar System was formed around <u>4.6 billion years ago, </u>due to the gravitational collapse of a giant interstellar molecular cloud.
This cloud is a type of interstellar cloud and its density and size permit the formation of molecules, most commonly molecular hydrogen.
Therefore the principal substances were found before planets began to form are hydrogen and helium compounds, besides Rocks, metals, most of them in gaseous form.
I hope it helps you!
Answer:
1.86 m
Explanation:
First, find the time it takes to travel the horizontal distance. Given:
Δx = 52 m
v₀ = 26 m/s cos 31.5° ≈ 22.2 m/s
a = 0 m/s²
Find: t
Δx = v₀ t + ½ at²
52 m = (22.2 m/s) t + ½ (0 m/s²) t²
t = 2.35 s
Next, find the vertical displacement. Given:
v₀ = 26 m/s sin 31.5° ≈ 13.6 m/s
a = -9.8 m/s²
t = 2.35 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (13.6 m/s) (2.35 s) + ½ (-9.8 m/s²) (2.35 s)²
Δy = 4.91 m
The distance between the ball and the crossbar is:
4.91 m − 3.05 m = 1.86 m
it is just a matter of integration and using initial conditions since in general dv/dt = a it implies v = integral a dt
v(t)_x = integral a_{x}(t) dt = alpha t^3/3 + c the integration constant c can be found out since we know v(t)_x at t =0 is v_{0x} so substitute this in the equation to get v(t)_x = alpha t^3 / 3 + v_{0x}
similarly v(t)_y = integral a_{y}(t) dt = integral beta - gamma t dt = beta t - gamma t^2 / 2 + c this constant c use at t = 0 v(t)_y = v_{0y} v(t)_y = beta t - gamma t^2 / 2 + v_{0y}
so the velocity vector as a function of time vec{v}(t) in terms of components as[ alpha t^3 / 3 + v_{0x} , beta t - gamma t^2 / 2 + v_{0y} ]
similarly you should integrate to find position vector since dr/dt = v r = integral of v dt
r(t)_x = alpha t^4 / 12 + + v_{0x}t + c let us assume the initial position vector is at origin so x and y initial position vector is zero and hence c = 0 in both cases
r(t)_y = beta t^2/2 - gamma t^3/6 + v_{0y} t + c here c = 0 since it is at 0 when t = 0 we assume
r(t)_vec = [ r(t)_x , r(t)_y ] = [ alpha t^4 / 12 + + v_{0x}t , beta t^2/2 - gamma t^3/6 + v_{0y} t ]
Answer:
Frequency
Explanation:
The frequency ( ) of a wave is the number of waves passing a point in a certain time.