Answer:
57×2/3+32×450-[39-4+2]/2+8
57×2/3+32×450-(39-6/2)+8
57×2/3+32×450-36+8
57×2/3+14400-28
57×2/3+14372
38+14372
14410
Answer: -66.67%, but if the answer is supposed to positive then the answer is 66.67%.
<em>* Hopefully this helps:) </em>
Answer:
Step-by-step explanation:
Problem One (left panel)
<em><u>Question A</u></em>
- The y intercept happens when x = 0
- That being said, the y intercept is 50. It was moving when the timing began.
<em><u>Question B</u></em>
The rate of change = (56 - 52)/(3 - 1) = 4/2 = 2 miles / hour^2 (you have a slight acceleration.
<em><u>Question C</u></em>
- 60 = a + (n-1)d
- 60 = 50 + (n - 1)*2
- 10/2 = (n - 1)*2/2
- 5 = n - 1
- 6 = n
The way I have done it the domain is n from 1 to 6
Question 2 (Right Panel)
<em><u>Question A</u></em>
The equation for the table is f(x) = 3x - 3 which was derived simply by putting all three points into y = ax + b and solving.
- f(0) = ax + b
- -3 = a*0) + b
- b = - 3
- So far what you have is
- f(x) = ax - 3
- f(-1) = a*(-1) - 3 but we know (f(-1)) = -6
- - 6 = a(-1) - 3 add 3 to both sides
- -6 +3 = a(-1) -3 + 3
- -3 = a*(-1) Divide by - 1
- a = 3
- f(x) = 3x - 3 Answer for f(x)
- The slope of f(x) = the coefficient in front of the x
- f(x) has a slope of 3
- g(x) has a slope of 4
<em><u>Part B</u></em>
- f(x) has a y intercept of - 3
- g(x) has a y intercept of -5
- f(x) has the greater y intercept.
- -3 > - 5
I've answered your other question as well.
Step-by-step explanation:
Since the identity is true whether the angle x is measured in degrees, radians, gradians (indeed, anything else you care to concoct), I’ll omit the ‘degrees’ sign.
Using the binomial theorem, (a+b)3=a3+3a2b+3ab2+b3
⇒a3+b3=(a+b)3−3a2b−3ab2=(a+b)3−3(a+b)ab
Substituting a=sin2(x) and b=cos2(x), we have:
sin6(x)+cos6(x)=(sin2(x)+cos2(x))3−3(sin2(x)+cos2(x))sin2(x)cos2(x)
Using the trigonometric identity cos2(x)+sin2(x)=1, your expression simplifies to:
sin6(x)+cos6(x)=1−3sin2(x)cos2(x)
From the double angle formula for the sine function, sin(2x)=2sin(x)cos(x)⇒sin(x)cos(x)=0.5sin(2x)
Meaning the expression can be rewritten as:
sin6(x)+cos6(x)=1−0.75sin2(2x)=1−34sin2(2x)