Explanation :
It is given that,
BMR i.e basal metabolic rate is 88 kcal/hr. So, BMR in watts is converted by the following :
We know that, 1 kilocalorie = 4184 joules
So, 

J/sec is nothing but watts.
So, 
and 
So, it can be seen that the body can accommodate a modes amount of activity in hot weather but strenuous activity would increase the metabolic rate above the body's ability to remove heat.
Answer:
My answer is 7.2 km
Explanation:
When Stephen goes to the south and then to the east, he is drawing a right triangle, where the 4 km and 6 km sides are the cathetus of a right triangle.
Then we use the Pithagorean theorem to solve this problem. We need to find the hypotenuse.
c² = a² + b²
c² = 4² + 6²
c² = 16 + 36
c² = 52
c = 7.2 km
the friction force provided by the brakes is 30000 N.
<h3>What is friction force?</h3>
Friction force is the force that opposes the motion between two bodies in contact.
To calculate the average friction force provided by the brakes, we apply the formula below.
Formula:
- K.E = F'd............. Equation 1
Where:
- K.E = Kinetic energy of the train
- F' = Friction force provided by the brakes
- d = distance
Make F' the subject of the equation
- F' = K.E/d............ Equation 2
From the question,
Given:
Substitute these values into equation 2
- F' = (8.1 ×10⁶)/270
- F' = 30000 N
Hence, the friction force provided by the brakes is 30000 N
Learn more about friction force here: brainly.com/question/13680415
Answer: The reason for the differences in density is the composition of rock in the plates. When two plates come in contact with each other through plate tectonics, scientists can use the density of the plates to predict what will happen. Whichever plate is more dense will sink, and the less dense plate will float over it.
Explanation:
Hope this helps ( not copied and pasted, this answer was done by me so I don't know if it's good or not)
Answer:
66.26 m/s
Explanation:
Horizontal velocity, Vx = 55.3 m/s
Vertical velocity, Vy = 36.5 m/s
The value of the resultant velocity is given by the vector sum of the two velocities which are acting at 90°.


V = 66.26 m/s
Thus, the velocity of the vehicle is 66.26 m/s along its descent path.