Three basic types of population distribution within a regional range are (from top to bottom) uniform, random, and clumped.
Wavelength = velocity/frequency
wavelength = v/f
v= 13km/s = change this to m/s = 13000m/s
f= 14Hz
wavelength = 13000m/s÷14Hz =928.7 m
Answer:
The radius of the new planet is ~2.04 * 10⁶ m, or 2,041,752 m.
Explanation:
We can use Newton's Law of Universal Gravitation:
Let's look at Newton's 2nd Law:
We can set these equations equal to each other:
The mass of the second mass (astronaut) cancels out. We are left with:
We are solving for the radius of the new planet, so we can rearrange the equation:
Substitute in our known values given in the problem (<u><em>G = 6.67 * 10⁻¹¹ </em></u><em> ; </em><u><em>M = 7.5 * 10²³</em></u><em> ; </em><u><em>a = 12</em></u>).
The radius of the new planet is ~2.04 * 10⁶ m.
Answer
given,
mass of the drop, m = 0.0014 g
speed of the drop, u = 8.1 m/s
a) Change in momentum is equal to impulse
final velocity of the drop, v = 0 m/s
J = m ( v - u )
J = 0.0014 x 10⁻³ x ( 0 - 8.1 )
J = -1.134 x 10⁻⁵ kg.m/s
impulse of the roof = - J = 1.134 x 10⁻⁵ kg.m/s
b) time, t = 0.37 m s
impact of force = ?
we know
J = F x t
1.134 x 10⁻⁵ = F x 0.37 x 10⁻³
F = 0.031 N
the magnitude of the force of the impact is equal to F = 0.031 N