Answer:
d = 1.65 m
Explanation:
Given that,
The speed of a ball, v = 3 m/s
A ball rolls a level table that is 1.5 m above the floor.
We can find how long the ball is in free fall. We can use the second equation of kinematics as follows :

u is the initial speed in the vertical direction
So,

Now, using the formula of velocity.

So, the landing spot is at 1.65 m from the table.
Answer: It takes 2.85 seconds.
Explanation: according to the question, the kinematics equation for vertical motion is

y₀ is the initial postion and equals 0 because it is fired at ground level;
v₀ is the initial speed and eqauls 14m/s;
g is gravity and it is 9.8m/s²;
y(t) is the final position and equals 0 because it is when the pumpkin hits the ground;
Rewriting the equation, we have:
0 + 14t -
= 0
14t - 4.9t² = 0
t(14 - 4.9t) = 0
For this equation to be zero,
t = 0 or
14 - 4.9t = 0
- 4.9t = - 14
t = 
t = 2.86
It takes 2.86 seconds for the pumpkin to hit the ground.
I DONT know FiGURE it out YOURSELF
Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be 
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so,
>
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
The magnitude of the vector B is 10.9
A vector is a quantity which has magnitude as well as direction and it follows vector laws of addition.
To calculate the magnitude of the vector, we have to put the square of the components of the vector along the axes under the root.
Vector B has components,
x = 2.4
y = 9.8
z = 4.1
Applying the formula,
|B| = √x²+y²+z²
|B| = √(2.4)² + (9.8)² + (4.1)²
|B| = √5.76+96.04+16.81
|B| = √118.61
|B| = 10.9
Talking about the direction the the Vector B, it will be the line joining the origin with the points (2.4,9.8,4.1)
To know more about Vectors, visit,
brainly.com/question/25705666
#SPJ9