1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scZoUnD [109]
3 years ago
5

True or False? Shapes that have no right angles also have no perpendicular segments.

Mathematics
2 answers:
frosja888 [35]3 years ago
4 0
I think this is True. Because Perpendiculer Lines Rely On Right Angles. :)
Keith_Richards [23]3 years ago
4 0
The answer is true I hope that's help.

You might be interested in
Can somebody please help me with this question?
Aliun [14]

Answer:

120, 114, 126

Step-by-step explanation:

Since these are all exterior angles, they will all always add up to 360°. Since we know this, you can set up an equation and it would be x+(x+6)+114=360. When added you get 2x+120=360. Now subtract 120 on each side to get 2x equals 240. Then you divide by 2 and get that x is 120. Now all you have to do is plug x into the equations for the angles so they would be 120, 114, and 120+6 so 126. Now you have 120,114,and 126 as your angles. To check, just add all the angle measurements up and it should equal 360.

4 0
3 years ago
Read 2 more answers
Do looks matter when is comes to guys​
jenyasd209 [6]

Answer:

this is not academic so ty for points

Step-by-step explanation:

Most  guys look at looks, but genuine men look at personality

4 0
3 years ago
Read 2 more answers
Find the sum of the first 6 terms in the sequence -5 -25 -125 -625
sashaice [31]
This is a geometric sequence, so use the formula for the sum of a geometric sequence:
Sum = (a(r^n - 1))/(r - 1)
where a is the first term, -5
r is the common ratio, 5
and n is the number of terms

Thus,
Sum = ((-5)(5^6 - 1))/(5-1) = -19530
5 0
3 years ago
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
3 years ago
Which of the following represents the factored form of f(x) = x3 − 81x?
sladkih [1.3K]
You're original equation has a -81, so the factored form will have to have a positive and negative multiplying one another to achieve that...

f(x) = x(x + 9)(x - 9)
3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the value of x in the equation 1x - y = 30, when y= 15?
    13·2 answers
  • PLEASE ANSWER + BRAINLIEST !!
    8·1 answer
  • Jack spends 15% of his pocket money on sweets and 35% on magazines how much does he spend and save each week
    10·1 answer
  • Which fraction is equivalent to -4/6
    5·1 answer
  • Please I need help with that one ???
    15·1 answer
  • Work out 1 2/3 ÷ 2 3/4 ?
    8·1 answer
  • What is the lenght of something that has a base of 6 and a height of 15
    15·1 answer
  • The black graph is the graph of y = f(x).<br> Choose the equation for the red graph.<br> (Picture)
    6·1 answer
  • I need help please and thanks ​
    10·2 answers
  • Melanie is designing a new board game, and is trying to figure out all the possible outcomes. How many different possible outcom
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!