From equation of motion v^2 = u^2 +2aS
Hence, the final velocity is 40 m/s.
<em><u>hope </u></em><em><u>it's </u></em><em><u>help </u></em><em><u>you</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>! </u></em>
<em><u>#</u></em><em><u>rishu</u></em>
were solving for v velocity of the ball after it has hit the bottle. a. momentum ->p=mv->ball + bottle momentum during hit = ball + bottle momentum after hit-> ball (.5*21)+ bottle (.2*0) (it's 0 because the the bottle is standing still) = ball after hit (.5*v)+bottle after hit (.2*30) -> 10.5+0=.5v+6 ->4.5=.5v->v=9m/s
b. if bottle was heavier the ball would be slower so final velocity would decrease
Explanation:
Given:
Final speed of mass A = Va
Final speed of mass B = Vb
Mass of A = Ma
Mass of B = Mb
Ma = 2 × Mb
By conservation of linear momentum,
0 = Ma × Va + Mb × Vb
0 = 2 × Mb × Va + Mb × Vb
Vb = - 2 × Va
Energy of the spring, U = 1/2 × k × x^2
1/2 k x² = 1/2 × Ma × Va² + 1/2 × Mb × Vb²
35 = 1/2 × Ma × Va² + 1/2 × Mb × Vb²
Ma × Va² + Mb × Vb² = 70
2 × Mb (-Vb/2)² + Mb × Vb² = 70
1/2 × Mb × Vb² + Mb × Vb² = 70
3/2 × Mb × Vb² = 70
Mb × Vb² = 140/3
= 46.7 J
Ma = 2 × Mb and Vb = - 2 × Va
Ma/2 × (4 × Va²) = 140/3
Ma × Va² = 70/3
Kinetic energy of mass A, KEa = 1/2 × Ma × Va² = 23.3 J
Kinetic energy of mass B = 1/2 × Mb × Vb² = 46.7 J