Answer:
Newton (N)
Explanation:
A newton is the unit of measurement for force
Seven
The magnitude is pointing towards the origin and is at - 20 degrees. The combination makes 160 with the x axis: C answer
Eight
They keep doing this. They use distance where they should use displacement but they use distance to try and fool you. It's a mighty poor practice.
The distance between the start and end points is the displacement. That "distance" is 180*sqrt(25) = 900 . The actual distance should be 180*4 + 180*3 = 720 + 540 = 1260. That's what a car's odometer or a bicycle odometer would read. the difference is 360.
I really do object to the wording, but what can I do?
Nine
Nine is the same thing as 8.
Displacement = sqrt(400^2 + 80^2)= sqrt(166400) = 408
The actual distance is 400 + 80 = 480
The difference is the answer = 480 - 408 = 72 <<<< Answer
Ten
This is just the displacement magnitude.
dis = sqrt(30^2 + 80^2)
dis = sqrt(900 + 6400)
dis = sqrt(7300)
dis = 85.44 <<<< Answer D
Twelve
Vi = 2.15*Sin(30) = 1.075 m/s
vf = 0
a = - 9.81
t = ?
<u>Formula</u>
a = (vf - vi)/t
<u>Solve</u>
-9.81 = (0 - 1.075)/t
- 9.81 * t = -1.075
t = 0.11 seconds
Thirteen
I'm leaving this last one to you. You need the initial height xo to answer it properly. Judging by the other questions, this one is right.
Edit
That is a surprise! Really quickly
d = 3.2 m
a = - 9.82
vf = 0
vi = ?
vf^2 = vi^2 - 2*a*d
0 = vi^2 - 2*9.81*3.2
vi = sqrt(19.62*3.2)
vi = 8.0 m/s But that is the vertical component of the speed
v = vi/sin(25)
v = 8.0/sin(25) = 11
Initial velocity (Vi) = 25 m/s
acceleration (a) = 
time interval (t) = 5 sec
let us assume that final velocity after 5 sec be Vf
As acceleration is constant, we can apply the the equation of motion with constant acceleration i.e. 
Hence, 
so, the velocity of bicyclist will be 5 m/s after 5 sec
5 seconds is a poor time to ask about, because the speed abruptly changes at exactly 5 seconds.
Up until that time, the speed has been 1 m/s. And then, at exactly 5 seconds, it becomes zero.
_________
It's also a poor question because speed is calculated from the distance covered, but the graph shows displacement, not distance. You can't really tell the distance covered from a displacement graph.
For example, if an object happens to be moving in a circle around the place where it started, then the total distance covered keeps increasing, but its displacement is constant.