Answer:
The semi truck travels at an initial speed of 69.545 meters per second downwards.
Explanation:
In this exercise we see a case of an entirely inellastic collision between the semi truck and the car, which can be described by the following equation derived from Principle of Linear Momentum Conservation: (We assume that velocity oriented northwards is positive)
(1)
Where:
,
- Masses of the semi truck and the car, measured in kilograms.
,
- Initial velocities of the semi truck and the car, measured in meters per second.
- Final speed of the system after collision, measured in meters per second.
If we know that
,
,
and
, then the initial velocity of the semi truck is:





The semi truck travels at an initial speed of 69.545 meters per second downwards.
Answer:
The gazelles top speed is 27.3 m/s.
Explanation:
Given that,
Acceleration = 4.2 m/s²
Time = 6.5 s
Suppose we need to find the gazelles top speed
The speed is equal to the product of acceleration and time.
We need to calculate the gazelles top speed
Using formula of speed

Where, v = speed
a = acceleration
t = time
Put the value into the formula


Hence, The gazelles top speed is 27.3 m/s.
Answer:
b. Constant magnitude, but varying direction, perpendicular to the equipotential.
Explanation:
As we know that the relation between electric field and electric potential is given as

here if we say that potential is constant because electric field sensor is moving along equi-potential line.
Then we will say
V = constant
so we have

so electric field will remain constant always in magnitude and always remains perpendicular to the surface
so we have
b. Constant magnitude, but varying direction, perpendicular to the equipotential.
Option (b) is correct.The index of refraction for the glass is 1.52
Explanation:
velocity of light in vacuum= C= 2.99 x 10⁸m/s
Velocity of light in glass = V= 1.97 x 10⁸m/s
The refractive index is given by n=
n= 2.99 x 10⁸/1.97 x 10⁸m/s
n= 1.52
Thus the refractive index of glass is 1.52
Answer:
<em>a) below the observed position</em>
<em>b) directly at the observed position</em>
<em></em>
Explanation:
If I'm standing on the bank of a stream, and I wish to spear a fish swimming in the water out in front of me, I would aim below the observed fish to make a direct hit. This is because the phenomenon of refraction of light in water causes the light coming from the fish is refract away from the normal as it passes into the air and into my eyes.
If I'm to zap the fish with a taser, I would aim directly at the observed fish because the laser (a form of concentrated light waves) will refract into the water, taking the same path the light from the fish took to get to my eyes.