Answer:
Final Temperature = 36.54 ⁰C
Explanation:
Lets suppose the gas is acting ideally, then according to Charle's Law, "<em>The volume of a fixed mass of gas at constant pressure is directly proportional to the absolute temperature</em>". Mathematically for initial and final states the relation is as follow,
V₁ / T₁ = V₂ / T₂
Data Given;
V₁ = 32 L
T₁ = 10 °C = 283.15 K ∴ K = °C + 273.15
V₂ = 35 L
T₂ = ??
Solving equation for T₂,
T₂ = V₂ × T₁ / V₁
Putting values,
T₂ = (35 L × 283.15 K) ÷ 32 L
T₂ = 309.69 K ∴ ( 36.54 °C )
Result:
As the volume is increased from 32 L to 35 L, therefore, the temperature must have increased from 10 °C to 36.54 °C.
Skuwel converter
Trust converter
Gear converter
Trigger converter
Hope it helps
For the conversions
I will start with pressure
1atm=101.3kPa
x =700kPa
x=700kPa/101.3kPa
x=6.91atm
Temperature
273K+30.00C
303K
Volume
1L=1000ml
x =50ml
x=0.05L
PV=nRT
6.91*0.05=n*0.08206*303
0.3455=24.86418n
0.3455/24.86418=n
0.0138=n
number of moles = 0.0138moles
Note: 0.08206 is the gas constant in this case
Answer:
The nuclear decay of radioactive elements is a process that is a useful tool for determining the absolute age of fossils and rocks. It is used as a clock, in which daughter elements or isotopes converted from parent isotopes by decaying at a particular time.
Radioactive decay rates are constant and do not change over time. It is measured in half-life. A half-life is a time it takes half of a parent isotope to decay and converted into a stable daughter isotope. How many parent isotopes and daughter isotopes present in the fossil or their abundance can help in determining the age of fossil or rock.
The metric prefix name for 1/100 is centimeters.