Answer:
Energy transfers to the metal from the water and calorimeter until they are all at room temperature.
Explanation:
i hope this helps
Ernest Rutherford
J. J Thomson
Explanation:
<u>Ernest Rutherford</u>
In 1911, Ernest Rutherford, a New Zealand chemist performed the gold foil experiment where he gave the modelling of the atom a boost.
Experiment
In his experiment, he bombarded a thin gold foil with alpha particles generated from a radioactive source. He found that most of the alpha particles passed through the gold foil while a few of them were deflected back.
Discovery and reflection on the atomic theory
To account for his observation, Rutherford suggested an atomic model in which an atom has small positively charged center where nearly all the mass is concentrated.
<u>J. J Thomson</u>
Experiment
In 1897 J.J Thomson performed experiments using the gas discharge tube that led to the discovery of the electrons. He called them cathode rays because they originate from the cathode and exits at the anode.
Discovery and reflection on the atomic theory
From his experiment on the gas discharge tube, Thomson was able determine the properties of cathode rays some of which are:
- they move in a straight line
- they possess kinetic energy
- they attract positive charges and repels negative charges
Using his observation, he proposed the plum pudding model of the atom where it is made up of entirely electrons.
learn more:
Rutherford brainly.com/question/1859083
#learnwithBrainly
Answer:
negative, positive, increase
Explanation:
From the given question,
During the formation of bond, between two atoms with difference between their electronegativity-
- The more electronegative atom, will pull the electrons towards itself , and hence acquires a partial negative charge,
And,
- The less electronegative atom, will acquire a partial positive charge.
- The more the difference between the electronegativity of the atoms, the more would be the magnitude of partial charge.
- And, the less would be the difference between the electronegativity of the atoms, the lesser would be the magnitude of partial charge.
The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
Answer: pH = 14
Explanation: Please see the attachments below