Answer:
JA
Explanation:
s of time, (b) the velocity and acceleration at t = 2.0 s, (c) the time at which the position is a maximum, (d) the time at which the velocity is zero, and (e) the maximum position. Assume all variable and constants are in SI units.
Answer:
The time it will take for the car to reach a velocity of 28 m/s is 7 seconds
Explanation:
The parameters of the car are;
The acceleration of the car, a = 4 m/s²
The final velocity of the car, v = 28 m/s
The initial velocity of the car, u = 0 m/s (The car starts from rest)
The kinematic equation that can be used for finding (the time) how long it will take for the car to reach a velocity of 28 m/s is given as follows;
v = u + a·t
Where;
v = The final velocity of the car, v = 28 m/s
u = The initial velocity of the car = 0 m/s
a = The acceleration of the car = 4 m/s²
t = =The time it will take for the car to reach a velocity of 28 m/s
Therefore, we get;
t = (v - u)/a
t = (28 m/s - 0 m/s)/(4 m/s²) = 7 s
The time it will take for the car to reach a velocity of 28 m/s, t = 7 seconds.
Given:
Velocity: 0.5 mile/minute
Time: 12 minute
Now we know that speed and velocity have the same magnitude. Hence speed=velocity=0.5 mile/min
Substituting the given values in the above formula we get
Distance = 0.5 x 12= 6 miles