Potential energy = mass x gravity x height
P.E = 4 x 9.8 x 3
P.E = 117.6 J
Answer:
Tension in the string is equal to 58.33 N ( this will be the strength of the string )
Explanation:
We have given mass m = 1.7 kg
radius of the circle r = 0.48 m![F=\frac{mv^2}{r}=\frac{1.7\times 4.05^2}{0.48}=58.33N](https://tex.z-dn.net/?f=F%3D%5Cfrac%7Bmv%5E2%7D%7Br%7D%3D%5Cfrac%7B1.7%5Ctimes%204.05%5E2%7D%7B0.48%7D%3D58.33N)
Kinetic energy is given 14 J
Kinetic energy is equal to ![KE=\frac{1}{2}mv^2](https://tex.z-dn.net/?f=KE%3D%5Cfrac%7B1%7D%7B2%7Dmv%5E2)
So ![\frac{1}{2}\times 1.7\times v^2=14](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5Ctimes%201.7%5Ctimes%20v%5E2%3D14)
![v^2=16.47](https://tex.z-dn.net/?f=v%5E2%3D16.47)
v = 4.05 m/sec
Centripetal force is equal to ![F=\frac{mv^2}{r}=\frac{1.7\times 4.05^2}{0.48}=58.33N](https://tex.z-dn.net/?f=F%3D%5Cfrac%7Bmv%5E2%7D%7Br%7D%3D%5Cfrac%7B1.7%5Ctimes%204.05%5E2%7D%7B0.48%7D%3D58.33N)
So tension in the string will be equal to 58.33 N ( this will be the strength of the string )
Gravitational potential energy = mass × gravity × height
Ep = (4)(9.81)(3)
Energy = 117.72 Joules
= 1.2x10^2 Joules