Answer:
66 rpm
Explanation:
The period of oscillation is given by
where T is time period of oscillation which is given as 0.35 s, k s spring constant and m is the mass of the object attached to the spring.
Also, net force is given by
Net force=
where
is the elongation, L is original length,
is the angular velocity
Substituting the equation of
into the above we obtain
Answer:
t = 5.19 s
Explanation:
We have,
Height of the cliff is 132 m
It is required to find the time taken by the ball to fall to the ground. Let t is the time taken. So, using equation of kinematics as :

So, it will take 5.19 seconds to fall to the ground.
Answer
Magma is less dense compared to the surrounding rock.
the overlying rock creates pressure which forces the magma to be directed upward.
Explanation:
at high temperatures the magma is liquid form with the high energy which causes the formation of bonds and the pressure build up creates the increase channeling of the liquid.as the temperature decreases the magma moves into the surface
If the corner is rounded and is perfectly circular, then the acceleration is centripetal and is always directed toward the center.