Newton's 2nd law:
Fnet = ma
Fnet is the net force acting on an object, m is the object's mass, and a is the acceleration.
The electric force on a charged object is given by
Fe = Eq
Fe is the electric force, E is the electric field at the point where the object is, and q is the object's charge.
We can assume, if the only force acting on the proton and electron is the electric force due to the electric field, that for both particles, Fnet = Fe
Fe = Eq
Eq = ma
a = Eq/m
We will also assume that the electric field acting on the proton and electron are the same. The proton and electron also have the same magnitude of charge (1.6×10⁻¹⁹C). What makes the difference in their acceleration is their masses. A quick Google search will provide the following values:
mass of proton = 1.67×10⁻²⁷kg
mass of electron = 9.11×10⁻³¹kg
The acceleration of an object is inversely proportional to its mass, so the electron will experience a greater acceleration than the proton.
Answer:
Explanation:
We shall apply law of conservation of momentum .
Momentum before collision = momentum after collision .
Momentum before collision = 400 kg m/s
Momentum after collision = 5 x v + 11 x 15
where v is velocity of A after the collision .
5 x v + 11 x 15 = 400
5 v = 400 - 165
5v = 235
v = 47 m /s .
The answer is high to low.
Answer:
D. 803 lbs
Explanation:
In order to find the compressive stress on all three blocks we first need to find the normal surface area of each:
Surface Area of 1 Block = 3.5 x 3.5
Surface Area of 1 Block = 12.25
Surface Area of all 3 Blocks = A = 3 x 12.25
Area = 36.75
Now, the stress is given by the following formula:
Stress = Force/Area
Stress = 29500 lbs/36.75
Stress = 802.72 lbs
Hence, the correct option will be:
<u>D. 803 lbs</u>
Explanation:
Below is an attachment containing the solution.