1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anon25 [30]
3 years ago
13

Se aplica una fuerza neta de 25 N a una masa de 10 kg. ¿Cuál es la aceleración dada a la masa?

Physics
1 answer:
lys-0071 [83]3 years ago
4 0

Answer:

Se queda

Explanation:

Porque 10 kg es más que 25N

You might be interested in
What is the theory behind a ticker tape lab?
Lana71 [14]
Purpose: experiments will use it to measure the straight-line accelerated motion of a human hand. The displacement data will be measured and velocity and acceleration will be calculated, run the ticker tape under the guides on the timer and under the carbon circle.Hope this helps! ; )
5 0
3 years ago
A certain resistor dissipates 0.5 W when connected to a 3 V potential difference. When connected to a 1 V potential difference,
Stels [109]

Answer:

<h2>0.056 W</h2>

Explanation:

Power = IV

From ohms law we know that

V= IR\\\\I= \frac{V}{R} \\\\Power= \frac{V}{R}*V\\\\Power= \frac{V^2}{R}

Given data

P1 = 0.5 Watt

P2 = ?

V1= 3 Volts

V2= 1 Volt

Thus we can solve for the power dissipated as follows

P1= \frac{V1^2}{R1}\\\\P2= \frac{V2^2}{R2}

\frac{P1}{P2} = \frac{V1^2}{V2^2}\\\\ P2=\frac{ V2^2}{ V1^2} *P1\\\\ P2=\frac{ 1^2}{ 3^2} *0.5= 0.055= 0.056 W

<em>The  resistor will dissipate 0.056 Watt</em>

7 0
3 years ago
Sometimes a person cannot clearly see objects close up or far away. To correct this type of vision, bifocals are often used. The
Rudik [331]

Answer:

1)   P₁ = -2 D,   2) P₂ = 6 D

Explanation:

for this exercise in geometric optics let's use the equation of the constructor

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where f is the focal length, p and q are the distance to the object and the image, respectively

1) to see a distant object it must be at infinity (p = ∞)

          \frac{1}{f_1} = \frac{1}{q}

           q = f₁

2) for an object located at p = 25 cm

            \frac{1}{f_2} = \frac{1}{25} + \frac{1}{q}

We can that in the two expressions we have the distance to the image, this is the distance where it can be seen clearly in general for a normal person is q = 50 cm

we substitute in the equations

1) f₁ = -50 cm

2)  

        \frac{1}{f_2} = \frac{1}{25} + \frac{1}{50}

        \frac{1}{f_2} = 0.06

         f₂ = 16.67 cm

the expression for the power of the lenses is

          P = \frac{1}{f}

where the focal length is in meters

           

1)       P₁ = 1/0.50

        P₁ = -2 D

2)     P₂ = 1 /0.16667

        P₂ = 6 D

4 0
2 years ago
an electron, a proton and a deuteron move in a magnetic field with same momentum perpendicularly. the ratio of the radii of thei
wel

If an electron, a proton, and a deuteron move in a magnetic field with the same momentum perpendicularly, the ratio of the radii of their circular paths will be:

  • 1: √2 : 1

<h3>How is the ratio of the perpendicular parts obtained?</h3>

To obtain the ratio of the perpendicular parts, one begins bdy noting that the mass of the proton = 1m, the mass of deuteron = 2m, and the mass of the alpha particle  = 4m.

The ratio of the radii of the parts can be obtained by finding the root of the masses and dividing this by the charge. When the coefficients are substituted into the formula, we will have:

r = √m/e : √2m/e : √4m/2e

When resolved, the resulting ratios will be:

1: √2 : 1

Learn more about the radii of their circular paths here:

brainly.com/question/16816166

#SPJ4

​

6 0
2 years ago
Two boats start together and race across a 48-km-wide lake and back. boat a goes across at 48 km/h and returns at 48 km/h. boat
jolli1 [7]

Answer:

Time required by boat 1 for the round trip is less than that of boat 2.

Hence, boat 1 wins.

Explanation:

Case 1: Boat 1

Speed of boat = \frac{distance of river}{time}

time = \frac{distance of river}{speed of boat}

While going to another end

time = \frac{distance of river}{speed of boat}

time = \frac{48}{48}

time = 1 hour

While going back,

time = \frac{distance of river}{speed of boat}

time = \frac{48}{48}

time = 1 hour

Total time taken by boat 1 is,

Total time by boat 1 = 1 hour + 1 hour = 2 hour

Total time by boat 1 = 2 hour

Total time taken by boat 1 for the round trip is 2 hour.

Case 2: Boat 2

Speed of boat = \frac{distance of river}{time}

time = \frac{distance of river}{speed of boat}

While going to another end

time = \frac{distance of river}{speed of boat}

time = \frac{48}{24}

time = 2 hour

While going back,

time = \frac{distance of river}{speed of boat}

time = \frac{48}{72}

time = 0.66 hour

Total time taken by boat 2 is,

Total time by boat 1 = 2 hour + 0.66 hour

Total time by boat 1 = 2.66 hour

Total time taken by boat 2 for the round trip is 2.66 hour.

Time required by boat 1 for the round trip is less than that of boat 2.

Hence, boat 1 wins.

5 0
3 years ago
Other questions:
  • What is the name of the process that involves a strong attractive force that keeps atoms together
    7·2 answers
  • Explain why it is easier to climba mountain on a zigzag path rather than one straight up the side. Is your increase in gravitati
    8·1 answer
  • If the moon is new as seen from the earth, what phase would the earth be in as seen by an astronaut on the moon? explain your re
    6·1 answer
  • Computer programs like spreadsheets can be used to help organize and analyze data. True or false
    6·2 answers
  • Help me plz the question was which wave has the highest pitch​
    5·2 answers
  • A 40kg mass is pulled by a horizontal force of 200N, with a constant velocity. What is h^2?
    10·1 answer
  • Which circuit hook-up design will have the brightest light bulb?A - 1 battery 1 bulb, B - 2 batteries 1 bulb, C - 3 batteries on
    11·1 answer
  • 4.
    14·1 answer
  • The __________________ is a network of cells and fibers that send messages to different parts of the body.
    7·2 answers
  • figure shows four situations in which a horizontal net force acts on the same block which is initially at rest
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!