1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
finlep [7]
3 years ago
13

100 POINTS 100 POINTS 100 POINTS!!!!! HELP PLEASE I DON'T KNOW WHAT TO DO!!!!!

Physics
2 answers:
krok68 [10]3 years ago
8 0

Answer:

sheesh what grade are you in

Westkost [7]3 years ago
3 0

Answer:

block 2 or 4

because of the distribution of weight and force being applied to the object

You might be interested in
A positive charge of 18nC is evenly distributed along a straight rod of length 4.0 m that is bent into a circular arc with a rad
sergey [27]

Explanation:

Formula for angle subtended at the center of the circular arc is as follows.

           \theta = \frac{S}{r}

where,   S = length of the rod

              r = radius

Putting the given values into the above formula as follows.      

                \theta = \frac{S}{r}

                             = \frac{4}{2}

                             = 2 radians (\frac{180^{o}}{\pi})

                             = 114.64^{o}

Now, we will calculate the charge density as follows.

                 \lambda = \frac{Q}{L}

                            = \frac{18 \times 10^{-9} C}{4 m}

                            = 4.5 \times 10^{-9} C/m

Now, at the center of arc we will calculate the electric field as follows.

                 E = \frac{2k \lambda Sin (\frac{\theta}{2})}{r}

                     = \frac{2(9 \times 10^{9} Nm^{2}/C^{2})(4.5 \times 10^{-9}) Sin (\frac{114.64^{o}}{2})}{2 m}

                      = 34.08 N/C

Thus, we can conclude that the magnitude of the electric eld at the center of curvature of the arc is 34.08 N/C.

5 0
3 years ago
Why do the lighter isotopes disappear first from the atmosphere? Where do those isotopes go?
denpristay [2]

Lighter molecules move fast and escape from the upper atmosphere relatively quickly.

To find the answer, we have to know more about the lighter isotopes.

<h3>What are lighter isotopes?</h3>
  • Lighter molecules are mobile and soon leave the higher atmosphere.
  • A particular element's stable isotopes have slightly different atomic masses and quantum mechanical energies.
  • The lighter isotope of an element's chemical bonds are more easily broken than the heavier isotope's.
  • As a result, the light isotope typically benefits from chemical reactions.

Thus, we can conclude that, lighter molecules move fast and escape from the upper atmosphere relatively quickly.

Learn more about the isotopes here:

brainly.com/question/364529

#SPJ4

3 0
1 year ago
A block of mass 200g is oscillating on the end of a horizontal spring of spring constant 100 N/m and natural length 12 cm. When
malfutka [58]

In order to determine the acceleration of the block, use the following formula:

F=ma

Moreover, remind that for an object attached to a spring the magnitude of the force acting over a mass is given by:

F=kx

Then, you have:

ma=kx

by solving for a, you obtain:

a=\frac{kx}{m}

In this case, you have:

k: spring constant = 100N/m

m: mass of the block = 200g = 0.2kg

x: distance related to the equilibrium position = 14cm - 12cm = 2cm = 0.02m

Replace the previous values of the parameters into the expression for a:

a=\frac{(\frac{100N}{m})(0.02m)}{0.2\operatorname{kg}}=10\frac{m}{s^2}

Hence, the acceleration of the block is 10 m/s^2

8 0
1 year ago
Cars A and B are racing each other along the same straight road in the following manner: Car A has a head start and is a distanc
4vir4ik [10]

The question is incomplete. Here is the complete question.

Cars A nad B are racing each other along the same straight road in the following manner: Car A has a head start and is a distance D_{A} beyond the starting line at t = 0. The starting line is at x = 0. Car A travels at a constant speed v_{A}. Car B starts at the starting line but has a better engine than Car A and thus Car B travels at a constant speed v_{B}, which is greater than v_{A}.

Part A: How long after Car B started the race will Car B catch up with Car A? Express the time in terms of given quantities.

Part B: How far from Car B's starting line will the cars be when Car B passes Car A? Express your answer in terms of known quantities.

Answer: Part A: t=\frac{D_{A}}{v_{B}-v_{A}}

              Part B: x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}

Explanation: First, let's write an equation of motion for each car.

Both cars travels with constant speed. So, they are an uniform rectilinear motion and its position equation is of the form:

x=x_{0}+vt

where

x_{0} is initial position

v is velocity

t is time

Car A started the race at a distance. So at t = 0, initial position is D_{A}.

The equation will be:

x_{A}=D_{A}+v_{A}t

Car B started at the starting line. So, its equation is

x_{B}=v_{B}t

Part A: When they meet, both car are at "the same position":

D_{A}+v_{A}t=v_{B}t

v_{B}t-v_{A}t=D_{A}

t(v_{B}-v_{A})=D_{A}

t=\frac{D_{A}}{v_{B}-v_{A}}

Car B meet with Car A after t=\frac{D_{A}}{v_{B}-v_{A}} units of time.

Part B: With the meeting time, we can determine the position they will be:

x_{B}=v_{B}(\frac{D_{A}}{v_{B}-v_{A}} )

x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}

Since Car B started at the starting line, the distance Car B will be when it passes Car A is x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}} units of distance.

5 0
3 years ago
Does friction always oppose relative motion?
Ilya [14]

Answer:

Yes

Explanation:

Friction is a force that opposes relative motion between systems in contact. One of the simpler characteristics of friction is that it is parallel to the contact surface between systems and always in a direction that opposes motion or attempted motion of the systems relative to each other.

3 0
3 years ago
Other questions:
  • Radiation emitted from human skin reaches its peak at λ = 940 µm. (a) What is the frequency of this radiation? (b) What type of
    12·1 answer
  • If a ray of light is incident on plane mirror at an angle of 300 its angle of reflection is.​
    9·1 answer
  • A person runs at a speed of 4 meters per second. How far will the person travel in 40 seconds?
    10·1 answer
  • A runner taking part in the 200 m dash must run around the end of a track that has a circular arc with a radius of curvature of
    8·1 answer
  • All of the following are examples of ways to improve energy efficiency of heating systems, except _______.
    12·1 answer
  • An apple falls because of the gravitational attraction to earth. how does the gravitational attraction of earth to the apple com
    12·1 answer
  • 80PTS
    15·1 answer
  • A 48.0-turn circular coil of radius 5.50 cm can be oriented in any direction in a uniform magnetic field having a magnitude of 0
    10·2 answers
  • A birthmark is generally a:<br><br> macule.<br><br> excoriation.<br><br> pustule.<br><br> bullae.
    8·2 answers
  • Harnessing tidal power would involve:_______.a) letting in-flowing and/or out-flowing tide flow through turbines in a dam.b) hug
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!