Answer:
1, 2 and 3
Explanation:
The most dense substance will settle at the bottom of the cup
Complete question:
Point charges q1=- 4.10nC and q2=+ 4.10nC are separated by a distance of 3.60mm , forming an electric dipole. The charges are in a uniform electric field whose direction makes an angle 36.8 ∘ with the line connecting the charges. What is the magnitude of this field if the torque exerted on the dipole has magnitude 7.30×10−9 N⋅m ? Express your answer in newtons per coulomb to three significant figures.
Answer:
The magnitude of this field is 826 N/C
Explanation:
Given;
The torque exerted on the dipole, T = 7.3 x 10⁻⁹ N.m
PEsinθ = T
where;
E is the magnitude of the electric field
P is the dipole moment
First, we determine the magnitude dipole moment;
Magnitude of dipole moment = q*r
P = 4.1 x 10⁻⁹ x 3.6 x 10⁻³ = 1.476 x 10⁻¹¹ C.m
Finally, we determine the magnitude of this field;

E = 826 N/C (in three significant figures)
Therefore, the magnitude of this field is 826 N/C
Weight doesn't really mean much as it just means gravity the bigger a space object is the more force it has to pull on something since the moon is smaller than the earth then it has less gravity and then less weight on scales.
Answer:
D) directly, inversely
Explanation:
The energy of a photon of light is directly proportional to its frequency and inversely proportional to its wavelength.
Frequency is the number of waves that passes through a point per unit of time.
Wavelength is the is the distance between successive crests or troughs on a wave.
Mathematically, frequency is related to wavelength and velocity using;
Energy = h x f
where h is the Planck's constant
f is the frequency
Since c = f ∧
where f is the frequency of the wave
∧ is the wavelength of the wave
c is the speed of light
So;
f = c/∧
Therefore;
E = 
From the equation, we see an inverse relationship between E and wavelength and a direct one with frequency.
Answer:
red shift, indicating that the universe is expanding
Explanation:
Doppler effect occurs when a source of a wave (e.g. light, or sound waves) moves relative to an observer; as a result of this relative motion, the wavelength of the wave appears lengthened/shortened to the observer. Two situations can occur:
- The source of the wave is moving towards the observer - in this case, the wavelength of the wave becomes shorter. If the wave is visible light, such as the light emitted by distant galaxies, this means that the wavelength of the light shifts towards the blue-end of the spectrum (blue-shift)
- The source of the wave is moving away from the observer - in this case, the wavelength of the wave becomes longer. If the wave is visible light, such as the light emitted by distant galaxies, this means that the wavelength of the light shifts towards the red-end of the spectrum (red-shift)
In our universe, we observe a red-shift for all the distant galaxies: this means that these galaxies are moving away from us, so this is an indication that the universe is expanding.