1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeeva-Olga [200]
3 years ago
7

If it is known that a motor battery has an input voltage of 12V and a capacity of 6 Ah, how much power and resistor value is req

uired to turn on 8 lamps with a parallel circuit, with the specifications of each lamp having a maximum voltage of 3V and an electric current of 140 mA? How long did all the lights go on until they off?
Physics
1 answer:
MArishka [77]3 years ago
5 0

Answer:

Part A

The power to turn on the lamp, ∑P = 3.36 W

Part B

The Resistor required is approximately 8.04 Ohms

Part C

The time for all the lights to go out is approximately 21.43 hours

Explanation:

The input voltage of the motor battery , V = 12 V

The capacity of the battery, Q = 6 Ah

The number of lamps in parallel = 8 lamps

The maximum voltage of each lamp,  = 3 V

The electric current in each lamp = 140 mA

The energy available in a battery, E = Q × V

For the battery, we have;

E = 6 Ah × 12 V = 72 Wh

The energy available in a battery, E = 72 Wh

Part A

The power used by the lamps, P_i = I_i × V_i

∴ The total power used by the lamp, ∑P = 8 × 0.14 A × 3 V = 3.36 W

The power to turn on the lamp, ∑P = 3.36 W

Part B

The resistance required, is given as follows;

Resistor required = (Battery voltage - Lamp voltage)/(The sum of bulb current)

∴ Resistor required = (12 V - 3 V)/(8 × 0.14 A)

The Resistor required = 8.03571429 Ohms

The Resistor required ≈ 8.04 Ohms

Part C

The time for all the lights to go out = The time for the lamps to use all the power available in the battery

The time for all the lights to go out, t = E/∑P

∴ t = 72 Wh/(3.36 W) = 21.4285714 h

∴ The time for all the lights to go out, t ≈ 21.43 h

The time for all the lights to go out = The time for the lamps to use all the power available in the battery = t ≈ 21.43 h

∴ The time for all the lights to go out ≈ 21.43 hours.

You might be interested in
NEEED HELP!!!
Amanda [17]

Answer:

The correct choice is A. Yes, the more exercise the better.

5 0
2 years ago
A 10cm long wire is pulled along a U-shaped conducting rail in a perpendicular magnetic field. The total resistance of the wire
soldi70 [24.7K]

Answer:

a)  v=4.0m/s

b)  B=2.958T

Explanation:

From the question we are told that:

Wire Length l=10cm=>0.10m

Resistance R=0.35

Force F=1.0N

Power P=4.0W

a)

Generally the equation for Power is mathematically given by

P=Fv

Therefore

v=\frac{P}{F}

v=\frac{4.0}{1.0}

v=4.0m/s

b)

Generally the equation for Magnetic Field is mathematically given by

B=\frac{\sqrt{PR}}{vl}

B=\frac{\sqrt{4*0.35}}{4*0.10}

B=2.958T

5 0
3 years ago
What is the acceleration of an object that has a mass of 10kg and is pushed with a force of 50n
worty [1.4K]

Answer:

5m/s/s

Explanation:

force = mass x acceleration

50 = 10a

a=5m/s/s

7 0
3 years ago
During a summer with little rainfall, your house on a hill slope experiences an interval during which your well runs dry. You ha
irina1246 [14]

Answer and Explanation:

You don't have water because of two possible reasons:

  1. Because of the summer and the little rain, the underwater supply goes low.
  2. The slope in the hill you live makes the underground water goes down by the effect of gravity. Imagine the underground water like a small tank, when the water is reduced for any reason the bottom of the tank will have the remaining water, while the top part will be "empty".

6 0
3 years ago
While jumping on a trampoline you calculate that at the highest peak of your jump you have 900 joules of gravitational potential
BabaBlast [244]

Jumping on a trampoline is a classic example of conservation of energy, from potential into kinetic. It also shows Hooke's laws and the spring constant. Furthermore, it verifies and illustrates each of Newton's three laws of motion.

<u>Explanation</u>

When we jump on a trampoline, our body has kinetic energy that changes over time. Our kinetic energy is greatest, just before we hit the trampoline on the way down and when you leave the trampoline surface on the way up. Our kinetic energy is 0 when you reach the height of your jump and begin to descend and when are on the trampoline, about to propel upwards.

Potential energy changes along with kinetic energy. At any time, your total energy is equal to your potential energy plus your kinetic energy. As we go up, the kinetic energy converts into potential energy.

Hooke's law is another form of potential energy. Just as the trampoline is about to propel us up, your kinetic energy is 0 but your potential energy is maximized, even though we are at a minimum height. This is because our potential energy is related to the spring constant and Hooke's Law.

8 0
3 years ago
Other questions:
  • What 2 aspects of a force do scientists measure???
    8·2 answers
  • Difference between acceleration and decceleration short notes​
    12·2 answers
  • Find the probability density of a particle moving in an interval of 101o the box. The length of the one-dimensional box is 20x10
    7·1 answer
  • If you whirl a tin can on the end of a string and the string suddenly breaks, in what direction will the can go?
    7·1 answer
  • A ball is thrown vertically upward from the edge of a bridge 22.0 m high with an initial speed of 16.0 m/s. The ball falls all t
    9·1 answer
  • What are three effect of force​
    7·1 answer
  • The resultant of two vectors acting at a 90°-angle can be determined from the _____ of the rectangle.
    12·2 answers
  • A 2.00 kg object is attached to a spring and placed on frictionless, horizontal surface. Ahorizontal force of 18.0 N is required
    5·1 answer
  • A ball is thrown vertically upwards with a velocity of 20 m s −1 from the top of a multistorey building of 25 m high. How high w
    8·1 answer
  • 4. The earth exerts a gravitational force of 3.5 N on an object. What is the mass of
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!