Answer:
there are two main type of root systems.
Answer:
The point at which the electrical potential is zero is x = +0.33 m.
Explanation:
By definition the electrical potential is:

Where:
K: is Coulomb's constant = 9x10⁹ N*m²/C²
q: is the charge
r: is the distance
The point at which the electrical potential is zero can be calculated as follows:

(1)
q₁ is the first charge = +3 mC
r₁ is the distance from the point to the first charge
q₂ is the first charge = -6 mC
r₂ is the distance from the point to the second charge
By replacing r₁ = 1 - r₂ into equation (1) we have:
(2)
By solving equation (2) for r₂:

Therefore, the point at which the electrical potential is zero is x = +0.33 m.
I hope it helps you!
Hello!
When the rock is dropped, it only contains Gravitational Potential Energy, and when it hits the ground, it contains Kinetic Energy.
So:
PE = KE

We can rearrange to solve for velocity. Cancel out mass and solve.

Plug in the givens:

Answer:
The tension in the rope is 20 N
Solution:
As per the question:
Mass of the object, M = 2 kg
Density of water, 
Density of the object, 
Acceleration due to gravity, g = 
Now,
From the fig.1:
'N' represents the Bouyant force and T represents tension in the rope.
Suppose, the volume of the block be V:
V =
(1)
Also, we know that Bouyant force is given by:

Using eqn (1):


From the fig.1:
N = Mg + T
40 = 2(10) + T
T = 40 - 20 = 20 N
