Answer:
The air molecules that are surrounding the metal will speed up, and the molecules in the metal will slow down.
Explanation:
There will be a transfer of thermal energy (heat) from the hot metal plate to the surrounding air. This transfer of energy equates to a transfer of kinetic energy in the molecules. As the plate loses heat, the molecules in the plate will lose kinetic energy and slow down. As the surrounding air gains heat, the molecules will gain kinetic energy and speed up.
It is rinsed one last time with the solution to be measured because if there is water in the burret, then it could alter the results. Slightly, but it is still altering it.
In order to solve this, we need to make use of Hess' Law.
We are already given the equations and their corresponding deltaH. Using Hess' Law, we can generate this equation:
104 kJ = x - (-1182 kJ) - (-1144 kJ)
Among the choices, the answer is
<span>B.104 = x - [(-1182) + (-1144)]
</span>
Answer:
B. CO₂ and H₂O.
Explanation:
When any organic substance undergoes complete combustion, it produces carbon dioxide (CO₂) and water (H₂O).
In the case of methane, the balanced reaction is:
With the above information in mind the correct answer is option B. CO₂ and H₂O.
When the combustion is incomplete, carbon monoxide (CO) is produced as well.