Answer:
Explanation:
There are a couple of ways you could do this.
The easiest is to use E*R1/(R1 + R2)
- E = 10 volts
- R1 = 590 ohms
- R2 = 840 ohms
So the result would be
E_590 = 10 * 590/(590 + 840)
E_590 = 10 * 590/ (1430)
E_590 = 4.13 volts rounded.
You could do this a slightly longer way.
R = 1430 (total ohms in series.
E = 10 volts
I = ???
I = E/R
I = 10 / 1430
I = 0.00699
Now use this current to figure out the voltage drop.
E = I * R
I = 0.00699 amps
R = 590 ohms
E = 0.00699 * 590
E = 4.13 volts
Pick the way of doing it you like best.
Answer:

Explanation:
Newton's ring equation relates the initial and final diameter of the ring, to the index of refraction of the air and the index of refraction of the liquid between the lens and the plates, as follows:

Solving for :

Recall that the refractive index of the air is 1. So, replacing the given diameters:

Answer:
(C) Decreases by factor of 3
Explanation:
Centripetal acceleration is given by

where <em>v</em> is the linear velocity and <em>r</em> is the radius of the curve.
Let the centripetal acceleration on the curve of radius <em>R</em> be
.
Then

Let the centripetal acceleration on the curve of radius 3<em>R</em> be
.
Then

Here, we see that the acceleration decreases by a factor of 3.
We want a sound wave with a wavelength of 0.52 meters or a natural fraction thereof. We'll work in MKS.
w = 0.52/n
That's length. We have speed 344 meters/second so w corresponds to a frequency of
f = 344 / w = n (344/.52)
f = 661.5 n Hertz
I don't really agree with how they're saying it, but all the fundamental talk is probably trying to tell us n=1,
Answer: 661.5 Hertz
Any multiple of that will also produce constructive interference; we can go to about n=30 before we're out of the audio range.