Part 1
When the solar atmosphere accumulates a lot of magnetic energy
to a point that cannot accumulate more, all that magnetic energy is suddenly released,
and with it, a lot of radiation. So much, that in fact it covers all of the
electromagnetic spectrum; from radio waves to gamma rays. That burst of
radiation is called a solar flare. In a single solar flare the amount of
radiation released is millions of times greater than all the nuclear bombs in
the face if the earth exploding together. Lucky for us, most of the high-energy
radiation dissipates before reaching the Earth, and the radiation that do reach
us, is deflected by the Earth’s magnetic field.
Part 2
1. Not all the radiation
of solar flares that reach the Earth is deflected by its magnetic field; some
of them reach us and charges the upper atmosphere with ionized particles. Those
particles react with the gases in the atmosphere and produce a light; that
light is what we call Auroras borealis or southern nights; One the most beautiful
natural spectacles in earth, who thought Auroras begin their lives as deadly
solar flares.
2. Solar flares
contain a lot of high-energy radiation that is extremely dangerous for our
electronic devices; when they reach the Earth, they can damage sensible
electronics like satellites. A very powerful solar flare could even damage all
the electronic devices on the surface of the Earth.
When sphere A and B are brought in contact and separated, charge on each sphere becomes [2x10^-6 + (-4x10^-6)]/ 2 = -1x10^-6 C.
That is, charge is equally separated and is the average of charges on both spheres. The reason behind equal charge on both spheres after separation is, when they are kept in contact, their potential difference becomes same.
When there's a hazard ahead, it's almost always quicker for you to steer away than to come to a full stop.
<h3>What is an hazard?</h3>
Hazard refers to any obstacle or other feature which causes risk or danger.
Living organisms respond to hazards via the production of adrenaline hormone. This hormone causes a flight response away from the hazard.
Therefore, when there's a hazard ahead, it's almost always quicker for you to steer away than to come to a full stop.
Learn more about hazards at: brainly.com/question/5338299
Answer:
7.39 m or 3.61 m
Explanation:
= Wavelength
f = Frequency = 90 Hz
v = Speed of sound = 340 m/s
Path difference of the two waves is given by

Velocity of wave


So, the location from the worker is 7.39 m or 3.61 m
just search up the answer/ definition to all of them, rephrase into own words, then do the same for examples.