The moment of inertia of a uniform solid sphere is equal to 0.448
.
<u>Given the following data:</u>
Mass of sphere = 7 kg.
Radius of sphere = 0.4 meter.
<h3>How to calculate moment of inertia.</h3>
Mathematically, the moment of inertia of a solid sphere is given by this formula:

<u>Where:</u>
- I is the moment of inertia.
Substituting the given parameters into the formula, we have;

I = 0.448
.
Read more on inertia here: brainly.com/question/3406242
Answer:
you absolute buffoon Use Ohms' Law: V = RI
V = (1x10^3)(5x10^-3) = 5 volts
Yes, this is in the range of normal household voltages.
Explanation:
Based on my information, this would actually be representing
"the average kinetic energy of water particles". So, as you take notice that where this temperature is being located, and also, how this would be

°C, this would make more sense for this to be representing as <span>the
average kinetic energy of water particles.</span>
Answer:
Blue is produced when mixing cyan and magenta ( removing red and green)
Answer:
The steps are outlined in the explanation below.
Explanation:
The average velocity is derived midpoint from the initial to the final velocity. Here is the proof:
Find the total displacement:
let the displacement be given by the letter s
Then since the average velocity is defined as: 
where t = final time
t₀ = initial time
v = final speed
v₀ = initial time
where x denotes the position, then

where v =
and dx = change in distance with respect to time.